-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_random_scan.R
209 lines (157 loc) · 7.07 KB
/
test_random_scan.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Testing of adaptive random walk Metropolis-within-Gibbs code with random scan incorporated
# Extention of test_random_walk.R
library(remotes)
# Package version 1.4.4.1, from adaptive branch (created 11/27/2019)
install_github("hheiling/glmmPen", ref = "adaptive", force = TRUE)
library(glmmPen)
library(stringr)
library(ggplot2)
library(reshape2)
# Number of studies
K = 5
d = 5
# Number of variables (Intercept, X1, X2)
q = 3
## Testing Adaptive Metropolis-within-Gibbs functions
AMCMC_test = function(fit_glmmPen, dat, M, batch_length, offset){
# Set variables
K = 5
q = 3
# U = matrix(rnorm(K*q), nrow = 1)
# Test acceptance rates for new Adaptive Metropolis-within-gibbs
post_list = sample_mc_rw_rs(fit = fit_glmmPen$fit, cov = fit_glmmPen$sigma, y = dat$y, X = dat$X,
Z = fit_glmmPen$extra$Znew2, nMC = M, family = "binomial",
group = dat$group, d = nlevels(dat$group), okindex = fit_glmmPen$extra$ok_index,
nZ = fit_glmmPen$extra$Znew2, gibbs = T, uold = fit_glmmPen$u, trace = 2,
proposal_SD = matrix(1.0, nrow = K, ncol = q), batch = 0.0,
batch_length = batch_length, offset = offset)
# post_list = sample_mc_rw_rs(fit = fit_glmmPen$fit, cov = fit_glmmPen$sigma, y = dat$y, X = dat$X,
# Z = fit_glmmPen$extra$Znew2, nMC = M, family = "binomial",
# group = dat$group, d = nlevels(dat$group), okindex = fit_glmmPen$extra$ok_index,
# nZ = fit_glmmPen$extra$Znew2, gibbs = T, uold = U, trace = 2,
# proposal_SD = matrix(1.0, nrow = K, ncol = q), batch = 0.0,
# batch_length = batch_length, offset = offset)
post_U = post_list$u0
gibbs_accept_rate = post_list$gibbs_accept_rate
proposal_SD = post_list$proposal_SD
return(list(post_U = post_U, gibbs_accept_rate = gibbs_accept_rate, proposal_SD = proposal_SD))
}
## Evaluate the performance of the chain
mcmc_diagnostics = function(post_U, dat){ # modified version of plot_mcmc.pglmmObj
# glmer modes:
data = data.frame(y = dat$y, X1 = dat$X[,2], X2 = dat$X[,3], group = dat$group)
fit_glmer = glmer(formula = y ~ X1 + X2 + (1 + X1 + X2 | group), data = data, family = "binomial")
mode_df = ranef(fit_glmer)[[1]]
modes = c(as.matrix(mode_df))
d = 5
var_num = 3
type = c("sample.path","histogram","cumsum","autocorr")
U_keep = post_U
var_names = c("Intercept","X1","X2")
grp_names = str_c("grp", 1:5)
var_str = rep(var_names, each = d)
grp_str = rep(grp_names, times = q)
U_cols = str_c(var_str, ":", grp_str)
vars = "all"
grps = "all"
U_t = data.frame(U_keep, t = 1:nrow(U_keep))
colnames(U_t) = c(U_cols, "t")
U_long = melt(U_t, id = "t")
U_plot = data.frame(U_long, var_names = rep(var_names, each = d*nrow(U_keep)),
grp_names = rep(rep(grp_names, each = nrow(U_keep)), times = var_num))
modes_data = data.frame(modes = modes, var_names = var_str, grp_names = grp_str)
print(modes_data)
plots_return = list()
if("sample.path" %in% type){
plot_sp = ggplot(U_plot, mapping = aes(x = t, y = value)) + geom_path() +
facet_grid(var_names ~ grp_names) + xlab("iteration t") + ylab("draws") +
geom_hline(data = modes_data, aes(yintercept = modes), color = "red")
plots_return$sample_path = plot_sp
}
if("histogram" %in% type){
hist_U = ggplot(U_plot) + geom_histogram(mapping = aes(x = value)) +
facet_grid(var_names ~ grp_names) + xlab("draws") +
geom_vline(data = modes_data, aes(xintercept = modes), color = "red")
plots_return$histogram = hist_U
}
if("cumsum" %in% type){
U_means = colMeans(U_keep)
U_means = data.frame(rbind(U_means))[rep.int(1L, nrow(U_keep)), , drop = FALSE]
U_tmeans = apply(U_keep, 2, cumsum) / 1:nrow(U_keep)
U_tdiff = U_tmeans - U_means
U_cumsum = apply(U_tdiff, 2, cumsum)
U_t = data.frame(U_cumsum, t = 1:nrow(U_cumsum))
colnames(U_t) = c(colnames(U_keep), "t")
U_long = melt(U_t, id = "t")
U_plot = data.frame(U_long, var_names = rep(var_names, each = d*nrow(U_keep)),
grp_names = rep(rep(grp_names, each = nrow(U_keep)), times = var_num))
plot_cumsum = ggplot(U_plot) + geom_smooth(mapping = aes(x = t, y = value), color = "black") +
geom_hline(yintercept = 0, linetype = "dashed") +
facet_grid(var_names ~ grp_names) + xlab("iteration t") + ylab("Cumulative Sum")
plots_return$cumsum = plot_cumsum
}
if("autocorr" %in% type){
grp_index = rep(grp_names, times = var_num)
var_index = rep(var_names, each = d)
for(j in 1:ncol(U_keep)){
ACF = acf(U_keep[,j], plot=F, lag.max = 40)
ACF_df = with(ACF, data.frame(lag,acf))
ACF_df$grp_names = grp_index[j]
ACF_df$var_names = var_index[j]
if(j == 1){
ACF_all = ACF_df
}else{
ACF_all = rbind(ACF_all, ACF_df)
}
}
plot_acf = ggplot(data = ACF_all, mapping = aes(x = lag, y = acf)) +
geom_hline(mapping = aes(yintercept = 0)) +
geom_segment(mapping = aes(xend = lag, yend = 0)) +
facet_grid(var_names ~ grp_names)
plots_return$autocorr = plot_acf
}
return(plots_return)
}
## Plots: sample_path, histogram, cumsum, autocorr
# Test of random walk code
fit_sim_rw_rs = function(output, M = 10^4, batch_length = 500, offset = 5000){
K = 5
q = 3
dat = output$dat
fit_glmmPen = output$fit_glmmPen
# original = sample.mc2(fit = fit_glmmPen$fit, cov = fit_glmmPen$sigma, y = dat$y, X = dat$X,
# Z = fit_glmmPen$extra$Znew2, nMC = M, family = "binomial",
# group = dat$group, d = nlevels(dat$group), okindex = fit_glmmPen$extra$ok_index,
# nZ = fit_glmmPen$extra$Znew2, gibbs = T, uold = fit_glmmPen$u, trace = 2)
#
# post_U_original = original$u0
# accept_rate_original = original$gibbs_accept_rate
#
# original_list = list(post_U = post_U_original, gibbs_accept_rate = accept_rate_original)
original_list = output$original
# Ouput: post_U, gibbs_accept_rate, proposal_SD
random_walk = AMCMC_test(fit_glmmPen, dat, M, batch_length, offset)
keep = list(dat = dat, fit_glmmPen = fit_glmmPen, original = original_list,
random_walk = random_walk)
return(keep)
}
# load test_results_noplots object
load("adaptive_vs_set_mcmc_noplots.RData")
test_randscan = list()
set.seed(146)
for(i in 4:6){
test_randscan[[i]] = fit_sim_rw_rs(test_results_noplots[[i]], M = 2000,
batch_length = 250, offset = 0)
}
par(mfrow = c(1,3))
for(element in 4:6){
x = c(test_randscan[[element]]$original$gibbs_accept_rate)
y = c(test_randscan[[element]]$random_walk$gibbs_accept_rate)
plot(x, y, ylim = c(0,1), xlim = c(0,1))
abline(a = 0, b = 1)
abline(a = 0.44, b = 0, col = "red")
}
plot_test = mcmc_diagnostics(post_U = test_randscan[[5]]$random_walk$post_U,
dat = test_randscan[[5]]$dat)
plot_test$sample_path
# The End