-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathemotion_recognition_test.py
204 lines (184 loc) · 10.2 KB
/
emotion_recognition_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import cv2
import time
import torch
from argparse import ArgumentParser
from ibug.face_alignment import FANPredictor
from ibug.face_alignment.utils import plot_landmarks
from ibug.emotion_recognition import EmoNetPredictor
from ibug.face_detection import RetinaFacePredictor, S3FDPredictor
def main() -> None:
# Parse command-line arguments
parser = ArgumentParser()
parser.add_argument('--input', '-i', help='Input video path or webcam index (default=0)', default=0)
parser.add_argument('--output', '-o', help='Output file path', default=None)
parser.add_argument('--fourcc', '-f', help='FourCC of the output video (default=mp4v)',
type=str, default='mp4v')
parser.add_argument('--benchmark', '-b', help='Enable benchmark mode for CUDNN',
action='store_true', default=False)
parser.add_argument('--no-display', '-n', help='No display if processing a video file',
action='store_true', default=False)
parser.add_argument('--detection-threshold', '-dt', type=float, default=0.8,
help='Confidence threshold for face detection (default=0.8)')
parser.add_argument('--detection-method', '-dm', default='retinaface',
help='Face detection method, can be either RatinaFace or S3FD (default=RatinaFace)')
parser.add_argument('--detection-weights', '-dw', default=None,
help='Weights to be loaded for face detection, ' +
'can be either resnet50 or mobilenet0.25 when using RetinaFace')
parser.add_argument('--detection-alternative-pth', '-dp', default=None,
help='Alternative pth file to be loaded for face detection')
parser.add_argument('--detection-device', '-dd', default='cuda:0',
help='Device to be used for face detection (default=cuda:0)')
parser.add_argument('--alignment-threshold', '-at', type=float, default=0.2,
help='Score threshold used when visualising detected landmarks (default=0.2)'),
parser.add_argument('--alignment-method', '-am', default='fan',
help='Face alignment method, must be set to FAN')
parser.add_argument('--alignment-weights', '-aw', default=None,
help='Weights to be loaded for face alignment, can be either 2DFAN2, 2DFAN4, ' +
'or 2DFAN2_ALT')
parser.add_argument('--alignment-alternative-pth', '-ap', default=None,
help='Alternative pth file to be loaded for face alaignment')
parser.add_argument('--alignment-device', '-ad', default='cuda:0',
help='Device to be used for face alignment (default=cuda:0)')
parser.add_argument('--emotion-method', '-em', default='emonet',
help='Emotion recognition method, must be set to EmoNet')
parser.add_argument('--emotion-weights', '-ew', default=None,
help='Weights to be loaded for emotion recognition, can be either ' +
'EmoNet248, EmoNet245, EmoNet248_2, or EmoNet245_2')
parser.add_argument('--emotion-alternative-pth', '-ep', default=None,
help='Alternative pth file to be loaded for emotion recognition')
parser.add_argument('--emotion-device', '-ed', default='cuda:0',
help='Device to be used for emotion recognition (default=cuda:0)')
args = parser.parse_args()
# Set benchmark mode flag for CUDNN
torch.backends.cudnn.benchmark = args.benchmark
vid = None
out_vid = None
has_window = False
try:
# Create the face detector
args.detection_method = args.detection_method.lower()
if args.detection_method == 'retinaface':
face_detector_class = (RetinaFacePredictor, 'RetinaFace')
elif args.detection_method == 's3fd':
face_detector_class = (S3FDPredictor, 'S3FD')
else:
raise ValueError('detector-method must be set to either RetinaFace or S3FD')
if args.detection_weights is None:
fd_model = face_detector_class[0].get_model()
else:
fd_model = face_detector_class[0].get_model(args.detection_weights)
if args.detection_alternative_pth is not None:
fd_model.weights = args.detection_alternative_pth
face_detector = face_detector_class[0](
threshold=args.detection_threshold, device=args.detection_device, model=fd_model)
print(f"Face detector created using {face_detector_class[1]} ({fd_model.weights}).")
# Create the landmark detector
args.alignment_method = args.alignment_method.lower()
if args.alignment_method == 'fan':
if args.alignment_weights is None:
fa_model = FANPredictor.get_model()
else:
fa_model = FANPredictor.get_model(args.alignment_weights)
if args.alignment_alternative_pth is not None:
fa_model.weights = args.alignment_alternative_pth
landmark_detector = FANPredictor(device=args.alignment_device, model=fa_model)
print(f"Landmark detector created using FAN ({fa_model.weights}).")
else:
raise ValueError('alignment-method must be set to FAN')
# Create the emotion recogniser
args.emotion_method = args.emotion_method.lower()
if args.emotion_method == 'emonet':
if args.emotion_weights is None:
er_model = EmoNetPredictor.get_model()
else:
er_model = EmoNetPredictor.get_model(args.emotion_weights)
if args.emotion_alternative_pth is not None:
er_model.weights = args.emotion_alternative_pth
emotion_recogniser = EmoNetPredictor(device=args.emotion_device, model=er_model)
print(f"Emotion recogniser created using EmoNet ({er_model.weights}).")
else:
raise ValueError('emotion-method must be set to EmoNet')
# Open the input video
using_webcam = not os.path.exists(args.input)
vid = cv2.VideoCapture(int(args.input) if using_webcam else args.input)
assert vid.isOpened()
if using_webcam:
print(f'Webcam #{int(args.input)} opened.')
else:
print(f'Input video "{args.input}" opened.')
# Open the output video (if a path is given)
if args.output is not None:
out_vid = cv2.VideoWriter(args.output, fps=vid.get(cv2.CAP_PROP_FPS),
frameSize=(int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))),
fourcc=cv2.VideoWriter_fourcc(*args.fourcc))
assert out_vid.isOpened()
# Process the frames
frame_number = 0
if len(emotion_recogniser.config.emotion_labels) == 8:
emotion_colours = ((192, 192, 192), (0, 255, 0), (255, 0, 0), (0, 255, 255),
(0, 128, 255), (255, 0, 128), (0, 0, 255), (128, 255, 0))
else:
emotion_colours = ((192, 192, 192), (0, 255, 0), (255, 0, 0), (0, 255, 255), (0, 0, 255))
window_title = os.path.splitext(os.path.basename(__file__))[0]
print('Processing started, press \'Q\' to quit.')
while True:
# Get a new frame
_, frame = vid.read()
if frame is None:
break
else:
# Detect faces
start_time = time.time()
faces = face_detector(frame, rgb=False)
current_time = time.time()
elapsed_time = current_time - start_time
# Face alignment
start_time = current_time
landmarks, scores, fan_features = landmark_detector(frame, faces, rgb=False, return_features=True)
current_time = time.time()
elapsed_time2 = current_time - start_time
# Emotion recognition
start_time = current_time
emotions = emotion_recogniser(fan_features)
current_time = time.time()
elapsed_time3 = current_time - start_time
# Textural output
print(f'Frame #{frame_number} processed in {elapsed_time * 1000.0:.04f} + ' +
f'{elapsed_time2 * 1000.0:.04f} + {elapsed_time3 * 1000.0:.04f} ms: ' +
f'{len(faces)} faces analysed.')
# Rendering
for idx, (face, lm, sc) in enumerate(zip(faces, landmarks, scores)):
bbox = face[:4].astype(int)
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=(0, 0, 255), thickness=2)
plot_landmarks(frame, lm, sc, threshold=args.alignment_threshold)
if len(face) > 5:
plot_landmarks(frame, face[5:].reshape((-1, 2)), pts_radius=3)
emo = emotion_recogniser.config.emotion_labels[emotions['emotion'][idx]].title()
val, ar = emotions['valence'][idx], emotions['arousal'][idx]
text_content = f'{emo} ({val: .01f}, {ar: .01f})'
cv2.putText(frame, text_content, (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_DUPLEX,
0.5, emotion_colours[emotions['emotion'][idx]], lineType=cv2.LINE_AA)
# Write the frame to output video (if recording)
if out_vid is not None:
out_vid.write(frame)
# Display the frame
if using_webcam or not args.no_display:
has_window = True
cv2.imshow(window_title, frame)
key = cv2.waitKey(1) % 2 ** 16
if key == ord('q') or key == ord('Q'):
print('\'Q\' pressed, we are done here.')
break
frame_number += 1
finally:
if has_window:
cv2.destroyAllWindows()
if out_vid is not None:
out_vid.release()
if vid is not None:
vid.release()
print('All done.')
if __name__ == '__main__':
main()