forked from microsoft/nlp-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence_classification.py
328 lines (282 loc) · 14.1 KB
/
sequence_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""Utilities for Xlnet Sequence Classification"""
import os
from collections import namedtuple
import mlflow
import mlflow.pytorch
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import AdamW, WarmupLinearSchedule, XLNetConfig, XLNetForSequenceClassification
from utils_nlp.common.pytorch_utils import get_device, move_model_to_device
from utils_nlp.models.xlnet.common import Language
class XLNetSequenceClassifier:
"""XLNet-based sequence classifier"""
def __init__(
self,
language=Language.ENGLISHCASED,
num_labels=5,
cache_dir=".",
num_gpus=None,
num_epochs=1,
batch_size=8,
lr=5e-5,
adam_eps=1e-8,
warmup_steps=0,
weight_decay=0.0,
max_grad_norm=1.0,
):
"""Initializes the classifier and the underlying pretrained model.
Args:
language (Language, optional): The pretrained model's language.
Defaults to 'xlnet-base-cased'.
num_labels (int, optional): The number of unique labels in the
training data. Defaults to 5.
cache_dir (str, optional): Location of XLNet's cache directory.
Defaults to ".".
num_gpus (int, optional): The number of gpus to use.
If None is specified, all available GPUs
will be used. Defaults to None.
num_epochs (int, optional): Number of training epochs.
Defaults to 1.
batch_size (int, optional): Training batch size. Defaults to 8.
lr (float): Learning rate of the Adam optimizer. Defaults to 5e-5.
adam_eps (float, optional): term added to the denominator to improve
numerical stability. Defaults to 1e-8.
warmup_steps (int, optional): Number of steps in which to increase
learning rate linearly from 0 to 1. Defaults to 0.
weight_decay (float, optional): Weight decay. Defaults to 0.
max_grad_norm (float, optional): Maximum norm for the gradients. Defaults to 1.0
"""
if num_labels < 2:
raise ValueError("Number of labels should be at least 2.")
self.language = language
self.num_labels = num_labels
self.cache_dir = cache_dir
self.num_gpus = num_gpus
self.num_epochs = num_epochs
self.batch_size = batch_size
self.lr = lr
self.adam_eps = adam_eps
self.warmup_steps = warmup_steps
self.weight_decay = weight_decay
self.max_grad_norm = max_grad_norm
# create classifier
self.config = XLNetConfig.from_pretrained(self.language.value, num_labels=num_labels, cache_dir=cache_dir)
self.model = XLNetForSequenceClassification(self.config)
def fit(
self,
token_ids,
input_mask,
labels,
val_token_ids,
val_input_mask,
val_labels,
token_type_ids=None,
val_token_type_ids=None,
verbose=True,
logging_steps=0,
save_steps=0,
val_steps=0,
):
"""Fine-tunes the XLNet classifier using the given training data.
Args:
token_ids (list): List of training token id lists.
input_mask (list): List of input mask lists.
labels (list): List of training labels.
token_type_ids (list, optional): List of lists. Each sublist
contains segment ids indicating if the token belongs to
the first sentence(0) or second sentence(1). Only needed
for two-sentence tasks.
verbose (bool, optional): If True, shows the training progress and
loss values. Defaults to True.
"""
device, num_gpus = get_device(self.num_gpus)
self.model = move_model_to_device(self.model, device, self.num_gpus)
token_ids_tensor = torch.tensor(token_ids, dtype=torch.long)
input_mask_tensor = torch.tensor(input_mask, dtype=torch.long)
labels_tensor = torch.tensor(labels, dtype=torch.long)
val_token_ids_tensor = torch.tensor(val_token_ids, dtype=torch.long)
val_input_mask_tensor = torch.tensor(val_input_mask, dtype=torch.long)
val_labels_tensor = torch.tensor(val_labels, dtype=torch.long)
if token_type_ids:
token_type_ids_tensor = torch.tensor(token_type_ids, dtype=torch.long)
val_token_type_ids_tensor = torch.tensor(val_token_type_ids, dtype=torch.long)
train_dataset = TensorDataset(token_ids_tensor, input_mask_tensor, token_type_ids_tensor, labels_tensor)
val_dataset = TensorDataset(
val_token_ids_tensor, val_input_mask_tensor, val_token_type_ids_tensor, val_labels_tensor,
)
else:
train_dataset = TensorDataset(token_ids_tensor, input_mask_tensor, labels_tensor)
val_dataset = TensorDataset(val_token_ids_tensor, val_input_mask_tensor, val_labels_tensor)
# define optimizer and model parameters
param_optimizer = list(self.model.named_parameters())
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
"weight_decay": self.weight_decay,
},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
val_sampler = RandomSampler(val_dataset)
val_dataloader = DataLoader(val_dataset, sampler=val_sampler, batch_size=self.batch_size)
num_examples = len(token_ids)
num_batches = int(np.ceil(num_examples / self.batch_size))
num_train_optimization_steps = num_batches * self.num_epochs
optimizer = AdamW(optimizer_grouped_parameters, lr=self.lr, eps=self.adam_eps)
scheduler = WarmupLinearSchedule(
optimizer, warmup_steps=self.warmup_steps, t_total=num_train_optimization_steps
)
global_step = 0
self.model.train()
optimizer.zero_grad()
for epoch in range(self.num_epochs):
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=self.batch_size)
tr_loss = 0.0
logging_loss = 0.0
val_loss = 0.0
for i, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
if token_type_ids:
x_batch, mask_batch, token_type_ids_batch, y_batch = tuple(t.to(device) for t in batch)
else:
token_type_ids_batch = None
x_batch, mask_batch, y_batch = tuple(t.to(device) for t in batch)
outputs = self.model(
input_ids=x_batch, token_type_ids=token_type_ids_batch, attention_mask=mask_batch, labels=y_batch,
)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers
loss.sum().backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
tr_loss += loss.sum().item()
optimizer.step()
# Update learning rate schedule
scheduler.step()
optimizer.zero_grad()
global_step += 1
# logging of learning rate and loss
if logging_steps > 0 and global_step % logging_steps == 0:
mlflow.log_metric("learning rate", scheduler.get_lr()[0], step=global_step)
mlflow.log_metric(
"training loss", (tr_loss - logging_loss) / (logging_steps * self.batch_size), step=global_step,
)
logging_loss = tr_loss
# model checkpointing
if save_steps > 0 and global_step % save_steps == 0:
checkpoint_dir = os.path.join(os.getcwd(), "checkpoints")
if not os.path.isdir(checkpoint_dir):
os.makedirs(checkpoint_dir)
checkpoint_path = checkpoint_dir + "/" + str(global_step) + ".pth"
torch.save(self.model.state_dict(), checkpoint_path)
mlflow.log_artifact(checkpoint_path)
# model validation
if val_steps > 0 and global_step % val_steps == 0:
# run model on validation set
self.model.eval()
val_loss = 0.0
for j, val_batch in enumerate(val_dataloader):
if token_type_ids:
val_x_batch, val_mask_batch, val_token_type_ids_batch, val_y_batch = tuple(
t.to(device) for t in val_batch
)
else:
token_type_ids_batch = None
val_x_batch, val_mask_batch, val_y_batch = tuple(t.to(device) for t in val_batch)
val_outputs = self.model(
input_ids=val_x_batch,
token_type_ids=val_token_type_ids_batch,
attention_mask=val_mask_batch,
labels=val_y_batch,
)
vloss = val_outputs[0]
val_loss += vloss.sum().item()
mlflow.log_metric("validation loss", val_loss / len(val_dataset), step=global_step)
self.model.train()
if verbose:
if i % ((num_batches // 10) + 1) == 0:
if val_loss > 0:
print(
"epoch:{}/{}; batch:{}->{}/{}; average training loss:{:.6f};\
average val loss:{:.6f}".format(
epoch + 1,
self.num_epochs,
i + 1,
min(i + 1 + num_batches // 10, num_batches),
num_batches,
tr_loss / (i + 1),
val_loss / (j + 1),
)
)
else:
print(
"epoch:{}/{}; batch:{}->{}/{}; average train loss:{:.6f}".format(
epoch + 1,
self.num_epochs,
i + 1,
min(i + 1 + num_batches // 10, num_batches),
num_batches,
tr_loss / (i + 1),
)
)
checkpoint_dir = os.path.join(os.getcwd(), "checkpoints")
if not os.path.isdir(checkpoint_dir):
os.makedirs(checkpoint_dir)
checkpoint_path = checkpoint_dir + "/" + "final" + ".pth"
torch.save(self.model.state_dict(), checkpoint_path)
mlflow.log_artifact(checkpoint_path)
# empty cache
del [x_batch, y_batch, mask_batch, token_type_ids_batch]
if val_steps > 0:
del [val_x_batch, val_y_batch, val_mask_batch, val_token_type_ids_batch]
torch.cuda.empty_cache()
def predict(
self, token_ids, input_mask, token_type_ids=None, num_gpus=None, batch_size=8, probabilities=False,
):
"""Scores the given dataset and returns the predicted classes.
Args:
token_ids (list): List of training token lists.
input_mask (list): List of input mask lists.
token_type_ids (list, optional): List of lists. Each sublist
contains segment ids indicating if the token belongs to
the first sentence(0) or second sentence(1). Only needed
for two-sentence tasks.
num_gpus (int, optional): The number of gpus to use.
If None is specified, all available GPUs
will be used. Defaults to None.
batch_size (int, optional): Scoring batch size. Defaults to 8.
probabilities (bool, optional):
If True, the predicted probability distribution
is also returned. Defaults to False.
Returns:
1darray, namedtuple(1darray, ndarray): Predicted classes or
(classes, probabilities) if probabilities is True.
"""
device, num_gpus = get_device(num_gpus)
self.model = move_model_to_device(self.model, device, num_gpus)
self.model.eval()
preds = []
with tqdm(total=len(token_ids)) as pbar:
for i in range(0, len(token_ids), batch_size):
start = i
end = start + batch_size
x_batch = torch.tensor(token_ids[start:end], dtype=torch.long, device=device)
mask_batch = torch.tensor(input_mask[start:end], dtype=torch.long, device=device)
token_type_ids_batch = torch.tensor(token_type_ids[start:end], dtype=torch.long, device=device)
with torch.no_grad():
pred_batch = self.model(
input_ids=x_batch, token_type_ids=token_type_ids_batch, attention_mask=mask_batch, labels=None,
)
preds.append(pred_batch[0].cpu())
if i % batch_size == 0:
pbar.update(batch_size)
preds = np.concatenate(preds)
if probabilities:
return namedtuple("Predictions", "classes probabilities")(
preds.argmax(axis=1), nn.Softmax(dim=1)(torch.Tensor(preds)).numpy()
)
else:
return preds.argmax(axis=1)