Skip to content

Latest commit

 

History

History
26 lines (11 loc) · 537 Bytes

Readme.md

File metadata and controls

26 lines (11 loc) · 537 Bytes

Predict real estate price

Stack:

numpy, pandas, sklearn, matplotlib, seaborn

Task:

Make model for predict real estate price using data from train.csv. Predict prices using test.csv.

Metric:

R2 - coefficient of determination (sklearn.metrics.r2_score)

Auxiliary metric:

MSE - mean squared error (sklearn.metrics.mean_squared_error)

Project:

Course project in the file Python4DS - Course project.ipynb