-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata2JSON.py
66 lines (54 loc) · 1.9 KB
/
data2JSON.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
### Write data: code and labels into json file which will be as input to codeBERT for next step.
import csv
import json
import pandas
from sklearn.preprocessing import MinMaxScaler
erroType = "SDC"
workPath = "./"
testDataFile = f"./{erroType}_test_resilience.jsonl"
trainDataFile = f"./{erroType}_train_resilience.jsonl"
validDataFile = f"./{erroType}_valid_resilience.jsonl"
csvFile_hackerrank = {"hackerrank/errorRate_O0.csv"}
csvFile_hpc = "hpc_applications/errorRate.csv"
##Classify SDC rate into 4 catogaries by 25%
def getLabel(SDC_rate):
if SDC_rate > 0.75:
return 2
elif SDC_rate > 0.5:
return 2
elif SDC_rate > 0.25:
return 1
else:
return 1
def getDic(i, df):
dictionary = {}
print(df['benmark'][i])
codeFile = open(f"hackerrank/Benchmarks/{df['benmark'][i]}/{df['benmark'][i]}.cpp", 'r')
codeLabel = getLabel(df[f'{erroType}'][i])
dictionary["code"] = codeFile.read()
dictionary["label"] = codeLabel
print(codeLabel)
return(dictionary)
trainData = []
testData = []
validData = []
#for train data:
df = pandas.read_csv(csvFile_hackerrank)
print(df)
df_min_max_scaled = df.copy()
# apply normalization techniques by Column 1
column = erroType
df_min_max_scaled[column] = (df_min_max_scaled[column] - df_min_max_scaled[column].min()) / (df_min_max_scaled[column].max() - df_min_max_scaled[column].min())
# view normalized data
print(df_min_max_scaled)
for i in range(0, 86):
trainData.append(getDic(i, df_min_max_scaled))
for i in range(86, 96):
validData.append(getDic(i, df_min_max_scaled))
with open(trainDataFile, "w") as outfile:
outfile.write("\n".join(json.dumps(i) for i in trainData))
with open(validDataFile, "w") as outfile:
outfile.write("\n".join(json.dumps(i) for i in validData))
with open(testDataFile, "w") as outfile:
outfile.write("\n".join(json.dumps(i) for i in testData))
#for test data