-
Notifications
You must be signed in to change notification settings - Fork 0
/
checker.py
139 lines (106 loc) · 4.06 KB
/
checker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
"""onnx checker
This implements graphalities that allows us to check whether a serialized
proto is legal.
"""
import functools
import sys
from typing import Any, Callable, Optional, Type, TypeVar, Union, cast
from google.protobuf.message import Message
import onnx.defs
import onnx.onnx_cpp2py_export.checker as C # noqa: N812
import onnx.shape_inference
from onnx import (
IR_VERSION,
AttributeProto,
FunctionProto,
GraphProto,
ModelProto,
NodeProto,
SparseTensorProto,
TensorProto,
ValueInfoProto,
helper,
)
# Limitation of single protobuf file is 2GB
MAXIMUM_PROTOBUF = 2000000000
# TODO: This thing where we reserialize the protobuf back into the
# string, only to deserialize it at the call site, is really goofy.
# Stop doing that.
# NB: Please don't edit this context!
DEFAULT_CONTEXT = C.CheckerContext()
DEFAULT_CONTEXT.ir_version = IR_VERSION
# TODO: Maybe ONNX-ML should also be defaulted?
DEFAULT_CONTEXT.opset_imports = {"": onnx.defs.onnx_opset_version()}
FuncType = TypeVar("FuncType", bound=Callable[..., Any])
# TODO: This really doesn't seem worth the metaprogramming...
def _create_checker(proto_type: Type[Message]) -> Callable[[FuncType], FuncType]:
def decorator(py_func: FuncType) -> FuncType:
@functools.wraps(py_func)
def checker(proto: Message, ctx: C.CheckerContext = DEFAULT_CONTEXT) -> Any:
if not isinstance(proto, proto_type):
raise RuntimeError(
f"You cannot pass an object that is not of type {proto_type.__name__}"
)
return getattr(C, py_func.__name__)(proto.SerializeToString(), ctx)
return cast(FuncType, checker)
return decorator
@_create_checker(ValueInfoProto)
def check_value_info(
value_info: ValueInfoProto, ctx: C.CheckerContext = DEFAULT_CONTEXT
) -> None:
pass
@_create_checker(TensorProto)
def check_tensor(tensor: TensorProto, ctx: C.CheckerContext = DEFAULT_CONTEXT) -> None:
pass
@_create_checker(AttributeProto)
def check_attribute(
attr: AttributeProto, ctx: C.CheckerContext = DEFAULT_CONTEXT
) -> None:
pass
@_create_checker(NodeProto)
def check_node(node: NodeProto, ctx: C.CheckerContext = DEFAULT_CONTEXT) -> None:
pass
def check_function(
function: FunctionProto, ctx: Optional[C.CheckerContext] = None
) -> None:
if ctx is None:
ctx = C.CheckerContext()
ctx.ir_version = helper.find_min_ir_version_for(
list(function.opset_import), True
)
function_opset_dic = {}
for domain_version in function.opset_import:
function_opset_dic[domain_version.domain] = domain_version.version
ctx.opset_imports = function_opset_dic
C.check_function(function.SerializeToString(), ctx)
@_create_checker(GraphProto)
def check_graph(graph: GraphProto, ctx: C.CheckerContext = DEFAULT_CONTEXT) -> None:
pass
def check_sparse_tensor(
sparse: SparseTensorProto, ctx: C.CheckerContext = DEFAULT_CONTEXT
) -> None:
C.check_sparse_tensor(sparse.SerializeToString(), ctx)
def check_model(model: Union[ModelProto, str, bytes], full_check: bool = False) -> None:
"""Check the consistency of a model. An exception is raised if the test fails.
Arguments:
model (ModelProto): model to check
full_check (bool): if True, the function checks shapes can be inferred
"""
# If model is a path instead of ModelProto
if isinstance(model, str):
C.check_model_path(model, full_check)
else:
protobuf_string = (
model if isinstance(model, bytes) else model.SerializeToString()
)
# If the protobuf is larger than 2GB,
# remind users should use the model path to check
if sys.getsizeof(protobuf_string) > MAXIMUM_PROTOBUF:
raise ValueError(
"This protobuf of onnx model is too large (>2GB). Call check_model with model path instead."
)
C.check_model(protobuf_string, full_check)
ValidationError = C.ValidationError