-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEnvironmental_Analysis.Rmd
613 lines (450 loc) · 19.2 KB
/
Environmental_Analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
---
title: "DS5110 Term Project - New York City Shootings"
author: "Hendrik Ombach"
date: "3/14/2021"
output: pdf_document
---
### Data is for 2006 to 2019
```{r - setup, include=FALSE, message = FALSE, warning = FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(dplyr)
library(readr)
library(tidyverse)
library(maps)
library(lubridate)
library(plyr)
library(GGally)
library(MASS)
library(gtsummary)
library(AER)
```
```{r - NYC Shootings Data - Set Up, message=FALSE}
shooting_df <- read_csv("Working_Data_Files/NYPD_Shooting_Data.csv")
names(shooting_df) <- tolower(names(shooting_df))
shooting_df <- shooting_df %>%
dplyr::rename(murder = statistical_murder_flag,
date= occur_date)
shooting_df$date <- mdy(shooting_df$date)
tt <- strptime(shooting_df$occur_time, "%H:%M")
shooting_df$hour <- format(round(tt, units="hours"), format="%H:%M")
shooting_df = shooting_df %>%
mutate(date = ymd(date)) %>%
mutate_at(vars(date), funs(year, month, day))
shooting_df$month <- as.factor(shooting_df$month)
# For negative binomial regression involving only the Bronx
bronx_shootings <- shooting_df %>%
dplyr::filter(boro == 'BRONX')
# list of dates and shooting counts in the Bronx
daily_shooting_counts <- ddply(bronx_shootings,.(date),nrow)
# subset the data frame
x <- shooting_df %>%
subset(select = c('date', 'occur_time', 'boro', 'precinct', 'location_desc',
'murder', 'perp_age_group', 'perp_sex', 'vic_age_group',
'vic_sex', 'vic_race'))
# write.csv(shooting_df, "Working_Data_Files/shooting_df.csv")
```
```{r - Weather Data Export to CSV Dataframe, message = FALSE}
weather_df <- list.files(path='Working_Data_Files/Weather/files', full.names = TRUE) %>%
lapply(read_csv) %>%
bind_rows
names(weather_df) <- tolower(names(weather_df))
weather_df <- weather_df %>%
dplyr::rename(max_temp = tmax, min_temp = tmin)
# format date column
weather_df$date <- mdy(weather_df$date)
write.csv(weather_df, "Working_Data_Files/Weather/all_weather.csv",
row.names = FALSE)
```
```{r - Pollution Data - Export to CSV Dataframes, message = FALSE}
# Columns in each pollutant frame to keep
keeps <- c("Date.Local", "Arithmetic.Mean")
## Run the pollutant code blocks to create initial csv data files. Subsequent
## runs of the data can use the block of code embedded in the 3 lines of hashtag
## marks
### Carbon Monoxide ############################################################
co_files <- list.files(path='Working_Data_Files/Full_Pollution/CO',
pattern = '*csv', full.names = TRUE)
ldf <- lapply(co_files, read.csv)
ldf <- lapply(ldf, function(x) x[x[,grep("County.Name",names(x))]=='Bronx',])
co_df <- do.call('rbind', ldf)
co_df <- co_df[keeps]
co_df <- dplyr::rename(co_df, co_ppm = Arithmetic.Mean)
write.csv(co_df, "Working_Data_Files/Full_Pollution/co_df.csv",
row.names = FALSE)
### Nitrogen Dioxide ###########################################################
no2_files <- list.files(path='Working_Data_Files/Full_Pollution/NO2',
pattern = '*csv', full.names = TRUE)
ldf <- lapply(no2_files, read.csv)
ldf <- lapply(ldf, function(x) x[x[,grep("County.Name",names(x))]=='Bronx',])
no2_df <- do.call('rbind', ldf)
no2_df <- no2_df[keeps]
no2_df <- dplyr::rename(no2_df, no2_ppm = Arithmetic.Mean)
write.csv(no2_df, "Working_Data_Files/Full_Pollution/no2_df.csv",
row.names = FALSE)
### Ozone ############################################################
ozone_files <- list.files(path='Working_Data_Files/Full_Pollution/ozone',
pattern = '*csv', full.names = TRUE)
ldf <- lapply(ozone_files, read.csv)
ldf <- lapply(ldf, function(x) x[x[,grep("County.Name",names(x))]=='Bronx',])
ozone_df <- do.call('rbind', ldf)
ozone_df <- ozone_df[keeps]
ozone_df <- dplyr::rename(ozone_df, ozone_ppm = Arithmetic.Mean)
write.csv(ozone_df, "Working_Data_Files/Full_Pollution/ozone_df.csv",
row.names = FALSE)
### Sulfur Dioxide ############################################################
so2_files <- list.files(path='Working_Data_Files/Full_Pollution/SO2',
pattern = '*csv', full.names = TRUE)
ldf <- lapply(so2_files, read.csv)
ldf <- lapply(ldf, function(x) x[x[,grep("County.Name",names(x))]=='Bronx',])
so2_df <- do.call('rbind', ldf)
so2_df <- so2_df[keeps]
so2_df <- dplyr::rename(so2_df, so2_ppb = Arithmetic.Mean)
write.csv(so2_df, "Working_Data_Files/Full_Pollution/so2_df.csv",
row.names = FALSE)
### PM2.5 ############################################################
pm2.5_files <- list.files(path='Working_Data_Files/Full_Pollution/PM2.5',
pattern = '*csv', full.names = TRUE)
ldf <- lapply(pm2.5_files, read.csv)
ldf <- lapply(ldf, function(x) x[x[,grep("AQS_PARAMETER_DESC",names(x))]=='PM2.5 - Local Conditions',])
pm2.5_df <- do.call('rbind', ldf)
pm2.5_df <- dplyr::rename(pm2.5_df, pm2.5_conc = Daily.Mean.PM2.5.Concentration)
pm2.5_df <- pm2.5_df[pm2.5_df$Site.Name == "IS 52", ]
pm2.5_df <- pm2.5_df %>%
subset(select = c(Date, pm2.5_conc)) %>%
dplyr::rename(Date.Local = Date)
pm2.5_df <- pm2.5_df %>%
mutate(Date.Local = mdy(Date.Local))
write.csv(pm2.5_df, "Working_Data_Files/Full_Pollution/pm2.5.csv",
row.names = FALSE)
################################################################################
################################################################################
################################################################################
##### If dataframes have already been created and saved previously
#
# co_df <- read.csv("Working_Data_Files/Full_Pollution/Pollutant_Dataframes/co_df.csv")
# no2_df <- read.csv("Working_Data_Files/Full_Pollution/Pollutant_Dataframes/no2_df.csv")
# so2_df <- read.csv("Working_Data_Files/Full_Pollution/Pollutant_Dataframes/so2_df.csv")
# ozone_df <- read.csv("Working_Data_Files/Full_Pollution/Pollutant_Dataframes/ozone_df.csv")
# pm2.5_df <- read.csv("Working_Data_Files/Full_Pollution/Pollutant_Dataframes/pm2.5.csv")
#
################################################################################
################################################################################
################################################################################
# Combine all dataframes into single dataframe
pollution_df <- co_df %>%
dplyr::left_join(no2_df, by = 'Date.Local') %>%
dplyr::left_join(ozone_df, by = 'Date.Local') %>%
dplyr::left_join(so2_df, by = 'Date.Local') %>%
dplyr::left_join(pm2.5_df, by = 'Date.Local')
# Remove so2 concentration values that are negative
pollution_df <- pollution_df %>%
dplyr::filter(so2_ppb >= 0.0)
# Average values with multiple measurements in a single day
pollution_df <- pollution_df %>%
group_by(Date.Local) %>%
mutate_each(funs(mean)) %>%
distinct
# Rename and format columns
pollution_df <- dplyr::rename(pollution_df, date = Date.Local)
pollution_df <- pollution_df %>%
mutate(date = ymd(date))
# Log transform sulfur dioxide
pollution_df<- pollution_df %>%
mutate(so2_ppb_log = log1p(so2_ppb))
write.csv(pollution_df, "Working_Data_Files/Full_Pollution/Pollutant_Dataframes/pollution_df.csv", row.names = FALSE)
```
```{r - Barometric Pressure Export to CSV, message = FALSE}
## Run the this code block to create initial csv data file. Subsequent
## runs can comment out this block and run the
## "Create Daily Shooting dataframe and Environmental Dataframe" block
pressure_keeps <- c("Date.Local", "Arithmetic.Mean")
pressure_files <- list.files(path='Working_Data_Files/Baro_Pressure/Yearly',
pattern = '*csv', full.names = TRUE)
ldf <- lapply(pressure_files, read.csv)
ldf <- lapply(ldf, function(x) x[x[,grep("County.Name",names(x))]=='Bronx',])
pressure_df <- do.call('rbind', ldf)
pressure_df <- pressure_df[pressure_keeps]
pressure_df <- pressure_df %>%
dplyr::rename(date = Date.Local,
baro_pressure = Arithmetic.Mean) %>%
mutate(date = ymd(date))
write.csv(pressure_df, 'Working_Data_Files/Baro_Pressure/pressure_df.csv')
```
```{r - Combine All Data Export to CSV daily_shootings_df}
## Run the this code block to create initial csv data file. Subsequent
## runs can comment out this block and run the
## "Create Daily Shooting dataframe and Environmental Dataframe" block
pollution_df <- read.csv("Working_Data_Files/Full_Pollution/pollution_df.csv")
weather_df <- read.csv("Working_Data_Files/Weather/all_weather.csv")
pressure_df <- read.csv("Working_Data_Files/Baro_Pressure/pressure_df.csv")
## join weather and pollution data
all_environmental <- full_join(weather_df, pollution_df, by = 'date')
# format date column
all_environmental <- all_environmental %>%
mutate(date = ymd(date)) %>%
mutate_at(vars(date), funs(year, month, day))
pollution_df <- pollution_df %>%
mutate(date = ymd(date))
pressure_df <- pressure_df %>%
mutate(date = ymd(date))
all_environmental <- full_join(all_environmental, pressure_df, by = 'date')
all_environmental$month <- as.factor(all_environmental$month)
write.csv(all_environmental, "Working_Data_Files/all_environmental.csv")
## create dataframe with one row per day with shooting # column
daily_shootings_df <- full_join(all_environmental, daily_shooting_counts,
by = 'date')
daily_shootings_df <- tidyr::replace_na(daily_shootings_df, list(V1=0))
# format and subset dataframe
daily_shootings_df <- daily_shootings_df %>%
dplyr::rename(shootings = V1) %>%
subset(select = -c(year, month, day, station, name, snwd, min_temp, snow)) %>%
na.omit(daily_shootings_df)
# write.csv(daily_shootings_df, "Working_Data_Files/daily_shootings_df.csv")
```
```{r Create Daily Shooting dataframe and Environmental Dataframe}
### Run if the csv files have already been created in the code blocks above
# daily_shootings_df <- read.csv("Working_Data_Files/daily_shootings_df.csv")
# all_environmental <- read.csv("Working_Data_Files/all_environmental.csv")
# all_environmental$month <- as.factor(all_environmental$month)
#
# daily_shootings_df <- daily_shootings_df %>%
# dplyr::filter(pm2.5_conc >= 0.0)
```
```{r - Environmental Visualization Investigation}
# vector to be used for x-axis labels
months <- c("Jan", 'Feb', "Mar", 'Apr', 'May', 'June', 'July',
'Aug', 'Sep', 'Oct', 'Nov', 'Dec')
daily_shootings_df %>%
ggplot(aes(x = shootings)) +
geom_histogram(binwidth=1, fill = 'Dark Red') +
labs(title = "Distribution of the Number of Shootings in a Single Day - Bronx",
x = "Shootings in a Day", y = 'Count') +
theme(axis.text=element_text(size=12))
shooting_df %>%
dplyr::filter(boro=='BRONX') %>%
ggplot(aes(x = month)) +
geom_bar(fill = 'dark red') +
labs(title = "Distribution of Shootings per Month in the Bronx",
y = 'Count', x = '') +
scale_x_discrete(labels=months) +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=month, y=co_ppm)) +
geom_bar(stat = "summary", fun = "mean", fill = 'Dark blue') +
scale_x_discrete(labels=months) +
labs(title = 'Average Carbon Monoxide Levels per Month',
y = "Parts per Million", x = '') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=month, y=no2_ppm)) +
geom_bar(stat = "summary", fun = "mean", fill = 'Dark green') +
scale_x_discrete(labels=months) +
labs(title = 'Average Nitrogen Dioxide Levels per Month',
y = "Parts per Million", x = '') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=month, y=ozone_ppm)) +
geom_bar(stat = "summary", fun = "mean", fill = 'coral3') +
scale_x_discrete(labels=months) +
labs(title = 'Average Ozone Levels per Month',
y = 'Parts per Million', x = '') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=month, y=so2_ppb)) +
geom_bar(stat = "summary", fun = "mean", fill = 'cadetblue') +
scale_x_discrete(labels=months) +
labs(title = 'Average Sulfur Dioxide Levels per Month',
y = "Parts per Billion", x = '') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=month, y=max_temp)) +
geom_bar(stat = "summary", fun = "mean", fill = 'burlywood4') +
scale_x_discrete(labels=months) +
labs(title = 'Average Max Daily Temperatures per Month',
y = 'Temperature (ºF)', x = '') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=month, y=baro_pressure)) +
geom_bar(stat = "summary", fun = "mean", fill = 'purple') +
scale_x_discrete(labels=months) +
labs(title = 'Average Levels of Barometric Pressure per Month',
y = 'Millibars', x = '') +
coord_cartesian(ylim=c(990,1020)) +
theme(axis.text=element_text(size=12))
# tiff("pm25_month.tiff", units="in", width=8, height=5, res=300)
all_environmental %>%
ggplot(aes(x=month, y=pm2.5_conc)) +
geom_bar(stat = "summary", fun = "mean", fill = 'chartreuse3') +
scale_x_discrete(labels=months) +
labs(title = 'Average Levels of PM2.5 per Month',
y = 'ug/m^3', x = '')+
theme(axis.text=element_text(size=12))
# dev.off()
all_environmental %>%
ggplot(aes(x=co_ppm)) +
geom_histogram(bins = 100, fill = 'dark blue') +
labs(title = 'Distribution of Carbon Monoxide Levels',
x='Carbon Monoxide') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=no2_ppm)) +
geom_histogram(bins = 100, fill = 'dark green')+
labs(title = 'Distribution of Nitrogen Dioxide Levels',
x='Nitrogen Dioxide') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=ozone_ppm)) +
geom_histogram(bins = 100, fill = 'coral3')+
labs(title = 'Distribution of Ozone Levels',
x = 'Ozone') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=so2_ppb)) +
geom_histogram(bins = 100, fill = 'cadetblue')+
labs(title = 'Distribution of Sulfur Dioxide Levels',
x = 'Sulfur Dioxide') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=so2_ppb_log)) +
geom_histogram(bins = 100, fill = 'cadetblue')+
labs(title = 'Distribution of Log Transformed Sulfur Dioxide Levels',
x = 'Log Sulfur Dioxide') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=max_temp)) +
geom_histogram(bins = 50, fill = 'burlywood4')+
labs(title = 'Distribution of Temperature Readings',
x = 'Temperature') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=prcp)) +
geom_histogram(fill = 'gray23', bins=50)+
labs(title = 'Distribution of Precipitation per Day (Inches)',
x = 'Precipitation') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=baro_pressure)) +
geom_histogram(fill = 'purple', bins=75)+
labs(title = 'Distribution of Barometric Pressure Levels (Millibars)',
x = 'Barometric Pressure') +
theme(axis.text=element_text(size=12))
all_environmental %>%
ggplot(aes(x=pm2.5_conc)) +
geom_histogram(fill = 'chartreuse3', binwidth=.21)+
labs(title = 'Distribution of PM2.5 Levels (ug/cubic meter)',
x = 'Particulate Matter < 2.5 microns') +
theme(axis.text=element_text(size=12))
# cor_matrix_df <- subset(daily_shootings_df, select = c(max_temp,
# co_ppm, no2_ppm, ozone_ppm,
# so2_ppb_log, prcp, baro_pressure))
#
#
# ggpairs(cor_matrix_df, ggplot2::aes(alpha=.01, fill='red'))
```
```{r - Environmental Regression Analysis}
# Poisson Model
p1 <- glm(shootings ~ co_ppm + no2_ppm + ozone_ppm + so2_ppb_log + max_temp +
baro_pressure, family="poisson", data=daily_shootings_df)
summary(p1)
tbl_regression(p1, exponentiate = FALSE)
tbl_regression(p1, exponentiate = TRUE)
dispersiontest(p1,trafo=1) # Significant over-dispersion observed
# Negative Binomial Model
nb1 <- glm.nb(shootings ~ co_ppm + no2_ppm + ozone_ppm + so2_ppb_log + pm2.5_conc + max_temp +
baro_pressure, data =daily_shootings_df)
# daily_shootings_df %>%
# select(co_ppm, no2_ppm, ozone_ppm, so2_ppb_log, pm2.5_conc, max_temp, prcp, baro_pressure) %>%
# tbl_summary()
summary(nb1)
tbl_regression(nb1, exponentiate = FALSE)
tbl_regression(nb1, exponentiate = TRUE)
```
```{r - Shootings - Location Investigation}
shooting_df %>%
ggplot(aes(x = boro)) +
geom_bar(fill = 'dark green') +
labs(title = "Significant Disparities Between Shootings in New York City boroughs",
x = '')
shooting_df %>%
filter(murder == TRUE) %>%
group_by(boro) %>%
ggplot(aes(x = boro)) +
geom_bar() +
labs(title = "Murders per borough")
shooting_df %>%
filter(murder == FALSE) %>%
group_by(boro) %>%
ggplot(aes(x = boro)) +
geom_bar() +
labs(title = "Non-fatal shootings per borough")
shooting_df %>%
filter(!is.na(location_desc)) %>%
group_by(murder) %>%
dplyr::count(location_desc, murder, sort = TRUE)
shooting_df %>%
filter(murder == TRUE) %>%
group_by(murder) %>%
dplyr::count(boro, murder, sort = TRUE)
head(shooting_df)
shooting_df %>%
filter(boro == 'MANHATTAN') %>%
dplyr::count()
```
```{r - Shootings - Time Investigation}
shooting_df %>%
ggplot(aes(x = hour)) +
geom_bar(fill = 'dark blue') +
labs(title = "New York City Shootings Occur at Higher Frequency at Night and Early Morning",
y = 'Count', x = 'Hour of Day') +
theme(axis.text.x = element_text(angle = 45))
shooting_df %>%
filter(murder == TRUE) %>%
ggplot(aes(x = hour)) +
geom_bar(fill = 'dark blue') +
labs(title = "New York City Murders Occur at Higher Frequency at Night and Early Morning",
y = 'Count', x = 'Hour of Day') +
theme(axis.text.x = element_text(angle = 45))
shooting_df %>%
ggplot(aes(x = month)) +
geom_bar(fill = 'dark blue') +
labs(title = "More New York City Shootings Occur in Late Summer - Autumn",
y = 'Count', x = 'Month') +
scale_x_discrete(labels=months) +
theme(axis.text.x = element_text(angle = 45))
```
```{r - Shootings - Race Investigation}
shooting_df %>%
filter(murder == TRUE & !is.na(perp_race)) %>%
arrange(perp_race) %>%
dplyr::count(perp_race, sort = TRUE)
shooting_df %>%
filter(murder == TRUE & !is.na(perp_race)) %>%
arrange(perp_race) %>%
dplyr::count(perp_race, vic_race, sort = TRUE)
shooting_df %>%
filter(vic_race != 'AMERICAN INDIAN/ALASKAN NATIVE' &
perp_race != 'AMERICAN INDIAN/ALASKAN NATIVE' &
vic_race != 'ASIAN / PACIFIC ISLANDER' &
perp_race != 'ASIAN / PACIFIC ISLANDER' & vic_race != 'UNKNOWN' &
perp_race != 'UNKNOWN') %>%
group_by(perp_race) %>%
ggplot(aes(x = perp_race)) +
facet_wrap(.~ vic_race) +
geom_bar(aes(fill = perp_race)) +
labs(title ="Shootings Between Race - Faceted by Victim's Race",
x = 'Perpetrator Race') +
coord_flip() +
theme(legend.position = "none")
shooting_df %>%
filter(murder == TRUE & vic_race != 'ASIAN / PACIFIC ISLANDER' &
perp_race != 'ASIAN / PACIFIC ISLANDER' & vic_race != 'UNKNOWN' &
perp_race != 'UNKNOWN') %>%
group_by(perp_race) %>%
ggplot(aes(x = perp_race)) +
facet_wrap(.~ vic_race) +
geom_bar(aes(fill = perp_race)) +
labs(title ="Murders Between Race - Faceted by Victim's Race",
x = 'Perpetrator Race') +
coord_flip() +
theme(legend.position = "none")
```