-
Notifications
You must be signed in to change notification settings - Fork 195
/
Copy pathmemory_util.py
80 lines (67 loc) · 2.53 KB
/
memory_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import math
import numpy as np
import torch
from typing import Optional
def get_similarity(mk, ms, qk, qe):
# used for training/inference and memory reading/memory potentiation
# mk: B x CK x [N] - Memory keys
# ms: B x 1 x [N] - Memory shrinkage
# qk: B x CK x [HW/P] - Query keys
# qe: B x CK x [HW/P] - Query selection
# Dimensions in [] are flattened
CK = mk.shape[1]
mk = mk.flatten(start_dim=2)
ms = ms.flatten(start_dim=1).unsqueeze(2) if ms is not None else None
qk = qk.flatten(start_dim=2)
qe = qe.flatten(start_dim=2) if qe is not None else None
if qe is not None:
# See appendix for derivation
# or you can just trust me ヽ(ー_ー )ノ
mk = mk.transpose(1, 2)
a_sq = (mk.pow(2) @ qe)
two_ab = 2 * (mk @ (qk * qe))
b_sq = (qe * qk.pow(2)).sum(1, keepdim=True)
similarity = (-a_sq+two_ab-b_sq)
else:
# similar to STCN if we don't have the selection term
a_sq = mk.pow(2).sum(1).unsqueeze(2)
two_ab = 2 * (mk.transpose(1, 2) @ qk)
similarity = (-a_sq+two_ab)
if ms is not None:
similarity = similarity * ms / math.sqrt(CK) # B*N*HW
else:
similarity = similarity / math.sqrt(CK) # B*N*HW
return similarity
def do_softmax(similarity, top_k: Optional[int]=None, inplace=False, return_usage=False):
# normalize similarity with top-k softmax
# similarity: B x N x [HW/P]
# use inplace with care
if top_k is not None:
values, indices = torch.topk(similarity, k=top_k, dim=1)
x_exp = values.exp_()
x_exp /= torch.sum(x_exp, dim=1, keepdim=True)
if inplace:
similarity.zero_().scatter_(1, indices, x_exp) # B*N*HW
affinity = similarity
else:
affinity = torch.zeros_like(similarity).scatter_(1, indices, x_exp) # B*N*HW
else:
maxes = torch.max(similarity, dim=1, keepdim=True)[0]
x_exp = torch.exp(similarity - maxes)
x_exp_sum = torch.sum(x_exp, dim=1, keepdim=True)
affinity = x_exp / x_exp_sum
indices = None
if return_usage:
return affinity, affinity.sum(dim=2)
return affinity
def get_affinity(mk, ms, qk, qe):
# shorthand used in training with no top-k
similarity = get_similarity(mk, ms, qk, qe)
affinity = do_softmax(similarity)
return affinity
def readout(affinity, mv):
B, CV, T, H, W = mv.shape
mo = mv.view(B, CV, T*H*W)
mem = torch.bmm(mo, affinity)
mem = mem.view(B, CV, H, W)
return mem