-
Notifications
You must be signed in to change notification settings - Fork 36
/
model_benchmark.py
566 lines (512 loc) · 18.3 KB
/
model_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
"""Save the number of trainable parameter and inference speed of all available models."""
# =============================================================================
# Copyright 2021 Henrique Morimitsu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import argparse
import logging
import os
from pathlib import Path
import sys
import time
from typing import Optional, Tuple, Union
import numpy as np
import pandas as pd
import plotly.express as px
import torch
from tqdm import tqdm
import ptlflow
from ptlflow import get_model_reference
from ptlflow.models.base_model.base_model import BaseModel
from ptlflow.utils.timer import Timer
from ptlflow.utils.utils import (
config_logging,
count_parameters,
get_list_of_available_models_list,
make_divisible,
)
NUM_COMMON_COLUMNS = 6
TABLE_KEYS_LEGENDS = {
"model": "Model",
"params": "Params",
"flops": "FLOPs",
"input_h": "InputH",
"input_w": "InputW",
"input_px": "InputPx",
"time": "Time(ms)",
"memory": "Memory(GB)",
}
TABLE_KEYS = list(TABLE_KEYS_LEGENDS.keys())
TABLE_LEGENDS = [TABLE_KEYS_LEGENDS[x] for x in TABLE_KEYS]
config_logging()
from torch.profiler import profile, record_function, ProfilerActivity
try:
import pynvml
except ImportError:
pynvml = None
logging.warning("pynvml is not installed, GPU memory usage will not be measured.")
def _init_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"model",
type=str,
default="all",
choices=["all", "select"] + get_list_of_available_models_list(),
help=("Path to a csv file with the speed results."),
)
parser.add_argument(
"--selection",
type=str,
nargs="+",
default=None,
help=(
"Used in combination with model=select. The select mode can be used to run the validation on multiple models "
"at once. Put a list of model names here separated by spaces."
),
)
parser.add_argument(
"--exclude",
type=str,
nargs="+",
default=None,
help=(
"Used in combination with model=all. A list of model names that will not be validated."
),
)
parser.add_argument(
"--csv_path",
type=str,
default=None,
help=("Path to a csv file with the speed results."),
)
parser.add_argument(
"--num_trials",
type=int,
default=1,
help=("Number of times to repeat the test with the same model."),
)
parser.add_argument(
"--num_samples",
type=int,
default=10,
help=("Number of forwards in one repetition to estimate average time"),
)
parser.add_argument(
"--sleep_interval",
type=float,
default=0.0,
help=("Number of seconds to sleep between each repetition"),
)
parser.add_argument(
"--input_size",
type=int,
nargs="+",
default=(500, 1000),
help=(
"Resolution of the input to forward."
"Must provide an even number of values."
"Each pair of values will be interpreted as one input size."
),
)
parser.add_argument(
"--output_path",
type=str,
default=str(Path("outputs/benchmark")),
help=("Path to a directory where the outputs will be saved."),
)
parser.add_argument(
"--final_speed_mode",
type=str,
choices=("avg", "median", "perc1", "perc5", "perc10"),
default="median",
help=(
"How to obtain the final speed results."
"percX represents reporting the value at the X-th percentile."
),
)
parser.add_argument(
"--final_memory_mode",
type=str,
choices=("avg", "median", "perc1", "perc5", "perc10", "first"),
default="first",
help=(
"How to obtain the final memory results."
"percX represents reporting the value at the X-th percentile."
),
)
parser.add_argument(
"--plot_axes",
type=str,
nargs=2,
choices=TABLE_KEYS[1:],
default=None,
help=("Name of two measured parameters to create a scatter plot."),
)
parser.add_argument(
"--plot_log_x",
action="store_true",
help="If set, the X-axis of the plot will be in log-scale.",
)
parser.add_argument(
"--plot_log_y",
action="store_true",
help="If set, the Y-axis of the plot will be in log-scale.",
)
parser.add_argument(
"--datatypes",
type=str,
nargs="+",
choices=("fp16", "fp32"),
default=("fp32",),
help="Datatypes to use during benchmark.",
)
return parser
def benchmark(args: argparse.Namespace, device_handle) -> pd.DataFrame:
"""Run the benchmark on all models.
Parameters
----------
args : argparse.Namespace
Arguments for configuring the benchmark.
Returns
-------
pd.DataFrame
A DataFrame with the benchmark results.
"""
df_dict = {
TABLE_LEGENDS[0]: pd.Series([], dtype="str"),
TABLE_LEGENDS[1]: pd.Series([], dtype="float"),
TABLE_LEGENDS[2]: pd.Series([], dtype="float"),
TABLE_LEGENDS[3]: pd.Series([], dtype="int"),
TABLE_LEGENDS[4]: pd.Series([], dtype="int"),
TABLE_LEGENDS[5]: pd.Series([], dtype="int"),
}
for dtype_str in args.datatypes:
df_dict[f"{TABLE_LEGENDS[6]}-{dtype_str}"] = pd.Series([], dtype="float")
df_dict[f"{TABLE_LEGENDS[7]}-{dtype_str}"] = pd.Series([], dtype="float")
df = pd.DataFrame(df_dict)
output_path = Path(args.output_path)
output_path.mkdir(parents=True, exist_ok=True)
model_args = args
if args.model == "all":
model_names = ptlflow.models_dict.keys()
model_args = None
elif args.model == "select":
if args.selection is None:
raise ValueError(
"When select is chosen, model names must be provided to --selection."
)
model_names = args.selection
model_args = None
else:
model_names = [args.model]
assert (len(args.input_size) % 2) == 0
if pynvml is not None and device_handle is not None:
device_info = pynvml.nvmlDeviceGetMemoryInfo(device_handle)
device_initial_used = device_info.used
for isize in range(0, len(args.input_size), 2):
input_size = args.input_size[isize : isize + 2]
exclude = args.exclude
if exclude is None:
exclude = []
for mname in tqdm(model_names):
if mname in exclude:
continue
new_df_dict = {}
for idtype, dtype_str in enumerate(args.datatypes):
try:
all_times = []
all_memories = []
first_memory_used = 0
for irep in range(args.num_trials + 1):
torch.cuda.empty_cache()
time.sleep(args.sleep_interval)
if pynvml is not None and device_handle is not None:
device_info = pynvml.nvmlDeviceGetMemoryInfo(device_handle)
device_start_rep_used = device_info.used
model = ptlflow.get_model(mname, args=model_args)
model = model.eval()
if torch.cuda.is_available():
model = model.cuda()
if dtype_str == "fp16":
model = model.half()
model_params = count_parameters(model)
repetition_times = estimate_inference_time(
args, model, input_size, dtype_str
)
if irep > 0:
all_times.extend(repetition_times)
if device_handle is not None:
device_info = pynvml.nvmlDeviceGetMemoryInfo(device_handle)
model_memory_used = device_info.used - device_start_rep_used
if irep > 0:
all_memories.extend(
[model_memory_used] * args.num_samples
)
else:
first_memory_used = (
device_info.used - device_initial_used
)
model = model.cpu()
model = None
model = ptlflow.get_model(mname, args=model_args)
model = model.eval()
inputs = {
"images": torch.rand(
1,
2,
3,
make_divisible(input_size[0], model.output_stride),
make_divisible(input_size[1], model.output_stride),
)
}
if torch.cuda.is_available():
model = model.cuda()
inputs["images"] = inputs["images"].cuda()
if dtype_str == "fp16":
model = model.half()
inputs["images"] = inputs["images"].half()
flops = count_flops(model, inputs)
all_times.sort()
final_times = {
"avg": np.array(all_times).mean(),
"median": all_times[len(all_times) // 2],
"perc1": all_times[len(all_times) // 100],
"perc5": all_times[len(all_times) // 20],
"perc10": all_times[len(all_times) // 10],
}
if len(all_memories) == 0:
all_memories = [0]
all_memories.sort()
final_memories = {
"avg": np.array(all_memories).mean(),
"median": all_memories[len(all_memories) // 2],
"perc1": all_memories[len(all_memories) // 100],
"perc5": all_memories[len(all_memories) // 20],
"perc10": all_memories[len(all_memories) // 10],
"first": first_memory_used,
}
if len(new_df_dict) == 0:
values = [
mname,
float(model_params) / 1e6,
flops / 1e9,
input_size[0],
input_size[1],
input_size[0] * input_size[1],
]
new_df_dict.update(
{
c: [v]
for c, v in zip(df.columns[:NUM_COMMON_COLUMNS], values)
}
)
values = [
final_times[args.final_speed_mode] * 1000,
final_memories[args.final_memory_mode] / 1024**3,
]
new_df_dict.update(
{
c: [v]
for c, v in zip(
df.columns[
NUM_COMMON_COLUMNS
+ 2 * idtype : NUM_COMMON_COLUMNS
+ 2 * (idtype + 1)
],
values,
)
}
)
except Exception as e: # noqa: B902
logging.warning(
"Skipping model %s with datatype %s due to exception %s",
mname,
dtype_str,
e,
)
if len(new_df_dict) > 0:
new_df = pd.DataFrame(new_df_dict)
df = pd.concat([df, new_df], ignore_index=True)
df = df.round(3)
df.to_csv(
output_path / f"model_benchmark-{args.model}.csv", index=False
)
save_plot(
output_path,
args.model,
df,
args.plot_axes,
args.plot_log_x,
args.plot_log_y,
args.datatypes[0],
)
return df
@torch.no_grad()
def count_flops(model, inputs):
with profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
record_shapes=True,
with_flops=True,
) as prof:
with record_function("model_inference"):
model(inputs)
key_averages = prof.key_averages()
flops = 0
for k in key_averages:
flops += k.flops
return flops
@torch.no_grad()
def estimate_inference_time(
args: argparse.Namespace,
model: BaseModel,
input_size: Tuple[int, int],
dtype_str: str,
) -> float:
"""Compute the average forward time for one model.
Parameters
----------
args : argparse.Namespace
Arguments for configuring the benchmark.
model : BaseModel
The model to perform the estimation.
Returns
-------
float
The average time of the runs.
"""
timer = Timer("inference")
time_vals = []
for i in range(args.num_samples + 1):
inputs = {
"images": torch.rand(
1,
2,
3,
make_divisible(input_size[0], model.output_stride),
make_divisible(input_size[1], model.output_stride),
)
}
if torch.cuda.is_available():
inputs["images"] = inputs["images"].cuda()
if dtype_str == "fp16":
inputs["images"] = inputs["images"].half()
if i > 0:
# Skip first time, it is slow due to memory allocation
timer.reset()
timer.tic()
model(inputs)
if i > 0:
timer.toc()
time_vals.append(timer.total())
return time_vals
def save_plot(
output_dir: Union[str, Path],
model_name: str,
df: pd.DataFrame,
plot_axes: Optional[Tuple[str, str]],
log_x: bool,
log_y: bool,
datatype: str,
) -> None:
"""Create a plot of the results and save to disk.
Parameters
----------
output_dir : Union[str, Path]
Path to the directory where the plot will be saved.
model_name : str
Name of the model. Used just to name the resulting file.
df : pd.DataFrame
A DataFrame with the benchmark results.
plot_axes : Optional[Tuple[str, str]]
Name of two parameters to create the scatter plot.
log_x : bool
If set, the X-axis is plot in log scale.
log_y : bool
If set, the Y-axis is plot in log scale.
datatype : str
Name of the datatype.
"""
if plot_axes is not None:
assert len(plot_axes) == 2
xkey, ykey = plot_axes
assert xkey in TABLE_KEYS
assert ykey in TABLE_KEYS
df_tmp = df.copy()
df_tmp = df_tmp.dropna()
xlegend = TABLE_KEYS_LEGENDS[xkey]
if xkey in ("memory", "time"):
xlegend += f"-{datatype}"
ylegend = TABLE_KEYS_LEGENDS[ykey]
if ykey in ("memory", "time"):
ylegend += f"-{datatype}"
if log_x:
log10_col = f"{xlegend}(Log10)"
df_tmp[log10_col] = np.log10(df[xlegend])
if log_y:
log10_col = f"{ylegend}(Log10)"
df_tmp[log10_col] = np.log10(df[ylegend])
fig = px.scatter(
df_tmp,
x=xlegend,
y=ylegend,
color=TABLE_LEGENDS[0],
symbol=TABLE_LEGENDS[0],
log_x=log_x,
log_y=log_y,
title=f"{xlegend} x {ylegend}",
)
fig.update_traces(
marker={"size": 20, "line": {"width": 2, "color": "DarkSlateGrey"}},
selector={"mode": "markers"},
)
fig.update_layout(title_font_size=30)
out_name = f"benchmark_plot-{model_name}-{plot_axes[0]}-{plot_axes[1]}.html"
out_path = Path(output_dir) / out_name
fig.write_html(out_path)
logging.info(
"Saved plot between %s and %s at: %s", plot_axes[0], plot_axes[1], out_path
)
if __name__ == "__main__":
parser = _init_parser()
# TODO: It is ugly that the model has to be gotten from the argv rather than the argparser.
# However, I do not see another way, since the argparser requires the model to load some of the args.
FlowModel = None
if len(sys.argv) > 1 and sys.argv[1] not in ["-h", "--help", "all", "select"]:
FlowModel = get_model_reference(sys.argv[1])
parser = FlowModel.add_model_specific_args(parser)
args = parser.parse_args()
device_handle = None
if pynvml is not None:
try:
device_id = int(os.environ["CUDA_VISIBLE_DEVICES"])
except (KeyError, ValueError):
device_id = 0
pynvml.nvmlInit()
device_handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
if args.csv_path is None:
df = benchmark(args, device_handle)
else:
df = pd.read_csv(args.csv_path)
Path(args.output_path).mkdir(parents=True, exist_ok=True)
save_plot(
args.output_path,
args.model,
df,
args.plot_axes,
args.plot_log_x,
args.plot_log_y,
args.datatypes[0],
)
print(f"Results saved to {str(args.output_path)}.")
print(df)