Skip to content
/ dseqr Public

single-cell and bulk RNA-seq analyses from counts → pathways → drug candidates.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

hms-dbmi/dseqr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

fcfc43b · Oct 21, 2024
May 24, 2024
Oct 21, 2024
May 21, 2024
Sep 29, 2024
Jun 18, 2024
May 21, 2024
May 22, 2024
May 23, 2024
May 2, 2022
Jun 16, 2021
Jun 6, 2022
Feb 9, 2024
Feb 17, 2021
May 18, 2023
Jun 18, 2024
Sep 29, 2024
Feb 13, 2021
Feb 13, 2021
Jun 18, 2024
Nov 13, 2021
Jun 15, 2023
Apr 12, 2022
May 23, 2024
May 22, 2024

Repository files navigation

CI DOI

Dseqr

End-to-End RNA-Seq Analysis

Dseqr is a web application that helps you run 10X single-cell and bulk RNA-seq analyses from fastq → pathways → drug candidates.

💡 Read the Docs and Open Dseqr →

Local setup

# install
install.packages('remotes')
remotes::install_github('hms-dbmi/dseqr')

# initialize and run new project
library(dseqr)
project_name <- 'example'

# directory to store application and project files in
data_dir <- './dseqr'

run_dseqr(project_name, data_dir)

To enable bulk fastq.gz import, first build a kallisto index for quantification. To do so run:

# default as used by run_dseqr
indices_dir <- file.path(data_dir, '.indices_dir')

rkal::build_kallisto_index(indices_dir)

scRNA-seq fastqs

dseqr can directly import cellranger formatted count matrices. If you are starting from fastq files, first install kb-python:

# install kallisto|bustools wrapper (required)
pip install kb-python

Then run pseudo-quantification:

# download pre-built index (mouse or human)
dseqr::download_kb_index(indices_dir, species = 'human')

# run pseudo-quantification
data_dir <- 'path/to/folder/with/fastqs'
dseqr::run_kb_scseq(indices_dir, data_dir, species = 'human')

# clean intermediate files produced by kb
dseqr::clean_kb_scseq(data_dir)

The resulting cellranger formatted count matrix files will be in the data_dir subdirectory bus_output/counts_unfiltered/cellranger.

Prefer docker?

# pull image
docker pull alexvpickering/dseqr

# run at http://0.0.0.0:3838/ and keep data on exit
docker run -v /full/path/to/data_dir:/srv/dseqr \
-p 3838:3838 \
alexvpickering/dseqr R -e 'library(dseqr); run_dseqr("example", "/srv/dseqr")'

Host it

To spin up your own AWS infrastructure to host dseqr, see dseqr.aws →

About

single-cell and bulk RNA-seq analyses from counts → pathways → drug candidates.

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Citation

Stars

Watchers

Forks

Packages

No packages published