- Tesla V100
- CUDA 11.1
- CUDNN 8.0
- python = 3.8
- torch = 1.10.1
- torchvision = 0.10.1
- scipy = 1.7.1
- numpy = 1.23.5
- pycocotools = 2.0
Command:
python main.py --model_type dino --use_dn\
--batch_size 2 --no_aux_loss --eval --position_embedding dab \
--cls_loss_coef 1.0 --dn_box_noise_scale 1.0 \
--cls_loss_coef 1 --dropout 0.0 --num_select 300 --num_queries 900\
--dec_pred_bbox_embed_share --dec_pred_class_embed_share \
--embed_init_tgt --match_unstable_error --resume path/to/checkpoints \
--transformer_activation relu\
--resume path/to/checkpoints \
--coco_path path/to/coco
COCO detection val5k evaluation results:
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.508
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.690
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.346
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.540
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.645
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.384
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.660
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.733
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.582
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.775
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.872