forked from jacobgil/pytorch-zssr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsource_target_transforms.py
153 lines (136 loc) · 5.19 KB
/
source_target_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import PIL
import random
from torchvision import transforms
from torchvision.transforms import functional as F
import numbers
class RandomRotationFromSequence(object):
"""Rotate the image by angle.
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees).
resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
An optional resampling filter.
See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
expand (bool, optional): Optional expansion flag.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
"""
def __init__(self, degrees, resample=False, expand=False, center=None):
self.degrees = degrees
self.resample = resample
self.expand = expand
self.center = center
@staticmethod
def get_params(degrees):
"""Get parameters for ``rotate`` for a random rotation.
Returns:
sequence: params to be passed to ``rotate`` for random rotation.
"""
angle = np.random.choice(degrees)
return angle
def __call__(self, data):
"""
img (PIL Image): Image to be rotated.
Returns:
PIL Image: Rotated image.
"""
hr, lr = data
angle = self.get_params(self.degrees)
return F.rotate(hr, angle, self.resample, self.expand, self.center), \
F.rotate(lr, angle, self.resample, self.expand, self.center)
class RandomHorizontalFlip(object):
"""Horizontally flip the given PIL Image randomly with a probability of 0.5."""
def __call__(self, data):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
hr, lr = data
if random.random() < 0.5:
return F.hflip(hr), F.hflip(lr)
return hr, lr
class RandomVerticalFlip(object):
"""Vertically flip the given PIL Image randomly with a probability of 0.5."""
def __call__(self, data):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
hr, lr = data
if random.random() < 0.5:
return F.vflip(hr), F.vflip(lr)
return hr, lr
class RandomCrop(object):
"""Crop the given PIL Image at a random location.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
padding (int or sequence, optional): Optional padding on each border
of the image. Default is 0, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively.
"""
def __init__(self, size, padding=0):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
@staticmethod
def get_params(data, output_size):
"""Get parameters for ``crop`` for a random crop.
Args:
img (PIL Image): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
hr, lr = data
w, h = hr.size
th, tw = output_size
if w == tw or h == th:
return 0, 0, h, w
if w < tw or h < th:
th, tw = h//2, w//2
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, data):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
hr, lr = data
if self.padding > 0:
hr = F.pad(hr, self.padding)
lr = F.pad(lr, self.padding)
i, j, h, w = self.get_params(data, self.size)
return F.crop(hr, i, j, h, w), F.crop(lr, i, j, h, w)
class ToTensor(object):
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
Converts a PIL Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
"""
def __call__(self, data):
"""
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
hr, lr = data
return F.to_tensor(hr), F.to_tensor(lr)