-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.py
239 lines (191 loc) · 10.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
#import numpy as np
from sklearn.metrics import precision_score, recall_score, f1_score
from models import EfficientKAN, FastKAN, BSRBF_KAN, FasterKAN, MLP
from pathlib import Path
from torch.utils.data import DataLoader
from tqdm import tqdm
from file_io import *
from prettytable import PrettyTable
def count_parameters(model):
table = PrettyTable(["Modules", "Parameters"])
total_params = 0
for name, parameter in model.named_parameters():
if not parameter.requires_grad:
continue
params = parameter.numel()
table.add_row([name, params])
total_params += params
print(table)
print(f"Total Trainable Params: {total_params}")
return total_params
def run(model_name = 'bsrbf_kan', batch_size = 64, n_input = 28*28, epochs = 10, n_output = 10, n_hidden = 64, \
grid_size = 5, num_grids = 8, spline_order = 3, ds_name = 'mnist', n_examples = -1, note = 'full'):
start = time.time()
# FashionMNIST
#Mean: 0.28604060411453247
#Standard Deviation: 0.3530242443084717
# MNIST
#Mean: 0.13066047430038452
#Standard Deviation: 0.30810782313346863
# Sign Language MNIST
# Mean: tensor([0.6257]), Std: tensor([0.1579])
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
trainset, valset = [], []
if (ds_name == 'mnist'):
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform
)
valset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform
)
elif(ds_name == 'fashion_mnist'):
trainset = torchvision.datasets.FashionMNIST(
root="./data", train=True, download=True, transform=transform
)
valset = torchvision.datasets.FashionMNIST(
root="./data", train=False, download=True, transform=transform
)
elif(ds_name == 'sl_mnist'):
from ds_model import SignLanguageMNISTDataset
trainset = SignLanguageMNISTDataset(csv_file='data\SignMNIST\sign_mnist_train.csv', transform=transform)
valset = SignLanguageMNISTDataset(csv_file='data\SignMNIST\sign_mnist_test.csv', transform=transform)
if (n_examples != -1):
trainset = torch.utils.data.Subset(trainset, range(n_examples))
trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=False)
valloader = DataLoader(valset, batch_size=batch_size, shuffle=False)
# Create model storage
output_path = 'output/'
Path(output_path).mkdir(parents=True, exist_ok=True)
saved_model_name = model_name + '__' + ds_name + '__' + note + '.pth'
saved_model_history = model_name + '__' + ds_name + '__' + note + '.json'
with open(os.path.join(output_path, saved_model_history), 'w') as fp: pass
# Define model
model = {}
print('model_name: ', model_name)
if (model_name == 'bsrbf_kan'):
model = BSRBF_KAN([n_input, n_hidden, n_output], grid_size = grid_size, spline_order = spline_order)
elif(model_name == 'fast_kan'):
model = FastKAN([n_input, n_hidden, n_output], num_grids = num_grids)
elif(model_name == 'faster_kan'):
model = FasterKAN([n_input, n_hidden, n_output], num_grids = num_grids)
elif(model_name == 'gottlieb_kan'):
model = GottliebKAN([n_input, n_hidden, n_output], spline_order = spline_order)
elif(model_name == 'mlp'):
model = MLP([n_input, n_hidden, n_output])
#model = MLPModel()
elif(model_name == 'cnn'):
model = CNNModel()
elif(model_name == 'brd_kan'):
model = BRD_KAN([n_input, n_hidden, n_output])
else:
model = EfficientKAN([n_input, n_hidden, n_output], grid_size = grid_size, spline_order = spline_order)
model.to(device)
print('parameters: ', count_parameters(model))
#return
# Define optimizer
lr = 1e-3
wc = 1e-4
optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=wc)
# Define learning rate scheduler
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.8)
# Define loss
criterion = nn.CrossEntropyLoss()
best_epoch, best_accuracy = 0, 0
y_true = [labels.tolist() for images, labels in valloader]
y_true = sum(y_true, [])
for epoch in range(1, epochs + 1):
# Train
model.train()
train_accuracy, train_loss = 0, 0
with tqdm(trainloader) as pbar:
for i, (images, labels) in enumerate(pbar):
images = images.view(-1, n_input).to(device)
optimizer.zero_grad()
output = model(images.to(device))
loss = criterion(output, labels.to(device))
train_loss += loss.item()
loss.backward()
optimizer.step()
#accuracy = (output.argmax(dim=1) == labels.to(device)).float().mean()
train_accuracy += (output.argmax(dim=1) == labels.to(device)).float().mean().item()
pbar.set_postfix(loss=train_loss/len(trainloader), accuracy=train_accuracy/len(trainloader), lr=optimizer.param_groups[0]['lr'])
train_loss /= len(trainloader)
train_accuracy /= len(trainloader)
# Validation
model.eval()
val_loss, val_accuracy = 0, 0
y_pred = []
with torch.no_grad():
for images, labels in valloader:
images = images.view(-1, n_input).to(device)
output = model(images.to(device))
val_loss += criterion(output, labels.to(device)).item()
y_pred += output.argmax(dim=1).tolist()
val_accuracy += ((output.argmax(dim=1) == labels.to(device)).float().mean().item())
# calculate F1, Precision and Recall
#f1 = f1_score(y_true, y_pred, average='micro')
#pre = precision_score(y_true, y_pred, average='micro')
#recall = recall_score(y_true, y_pred, average='micro')
f1 = f1_score(y_true, y_pred, average='macro')
pre = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
val_loss /= len(valloader)
val_accuracy /= len(valloader)
# Update learning rate
scheduler.step()
# Choose best model
if (val_accuracy > best_accuracy):
best_accuracy = val_accuracy
best_epoch = epoch
torch.save(model, output_path + '/' + saved_model_name)
print(f"Epoch {epoch}, Train Loss: {train_loss:.6f}, Train Accuracy: {train_accuracy:.6f}")
print(f"Epoch {epoch}, Val Loss: {val_loss:.6f}, Val Accuracy: {val_accuracy:.6f}, F1: {f1:.6f}, Precision: {pre:.6f}, Recall: {recall:.6f}")
write_single_dict_to_jsonl_file(output_path + '/' + saved_model_history, {'epoch':epoch, 'val_accuracy':val_accuracy, 'train_accuracy':train_accuracy, 'f1_macro':f1, 'pre_macro':pre, 're_macro':recall, 'best_epoch':best_epoch, 'val_loss': val_loss, 'train_loss':train_loss}, file_access = 'a')
end = time.time()
print(f"Training time (s): {end-start}")
write_single_dict_to_jsonl_file(output_path + '/' + saved_model_history, {'training time':end-start}, file_access = 'a')
def main(args):
if (args.mode == 'train'):
run(model_name = args.model_name, batch_size = args.batch_size, epochs = args.epochs, \
n_input = args.n_input, n_output = args.n_output, n_hidden = args.n_hidden, \
grid_size = args.grid_size, num_grids = args.num_grids, spline_order = args.spline_order, ds_name = args.ds_name, n_examples = args.n_examples, note = args.note)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Training Parameters')
parser.add_argument('--mode', type=str, default='train') # or test
parser.add_argument('--model_name', type=str, default='efficient_kan')
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--n_input', type=int, default=28*28)
parser.add_argument('--n_hidden', type=int, default=64)
parser.add_argument('--n_output', type=int, default=10)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--model_path', type=str, default='output/model.pth')
parser.add_argument('--grid_size', type=int, default=5)
parser.add_argument('--num_grids', type=int, default=8)
parser.add_argument('--spline_order', type=int, default=3)
parser.add_argument('--ds_name', type=str, default='mnist')
parser.add_argument('--n_examples', type=int, default=-1)
parser.add_argument('--note', type=str, default='full')
args = parser.parse_args()
global device
device = args.device
if (args.device == 'cuda'): # check available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
main(args)
#python run.py --mode "train" --model_name "bsrbf_kan" --epochs 35 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --grid_size 5 --spline_order 3 --ds_name "fashion_mnist"
#python run.py --mode "train" --model_name "efficient_kan" --epochs 35 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --grid_size 5 --spline_order 3 --ds_name "fashion_mnist"
#python run.py --mode "train" --model_name "fast_kan" --epochs 35 --batch_size 64 --n_input 3072 --n_hidden 64 --n_output 10 --num_grids 8 --ds_name "fashion_mnist"
#python run.py --mode "train" --model_name "faster_kan" --epochs 35 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --num_grids 8 --ds_name "fashion_mnist"
#python run.py --mode "train" --model_name "gottlieb_kan" --epochs 35 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --spline_order 3 --ds_name "fashion_mnist"
#python run.py --mode "train" --model_name "mlp" --epochs 35 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "fashion_mnist" --note "full"