-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest.py
153 lines (135 loc) · 5.76 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import os.path
import argparse
import numpy as np
import torch
import time
import h5py
from utils import utils_image
import PIL
from PIL import Image
import utils.save_image as save_img
from network.oscnet import OSCNet
from network.oscnetplus import OSCNetplus
parser = argparse.ArgumentParser(description="OSCNet_Test")
#for model_selection
parser.add_argument('--model', type=str, default="osc", help='osc or oscplus')
parser.add_argument("--model_dir", type=str, default="model_osc/net_latest.pt", help='path to model file')
parser.add_argument("--data_path", type=str, default="data/test/", help='path to test data')
parser.add_argument("--use_GPU", type=bool, default=True, help='use GPU or not')
parser.add_argument("--gpu_id", type=str, default="0", help='GPU id')
parser.add_argument("--save_path", type=str, default="save_results/", help='path to testing results')
#for filter parameterization
parser.add_argument('--padding', type=int, default=4, help='the number of padding during convolution')
parser.add_argument('--inP', type=int, default=5, help='control the basis for filter parameterization')
parser.add_argument('--sizeP', type=int, default=9, help='control the basis for filter parameterization')
parser.add_argument('--ifini', type=float, default=1, help='indicator for filter parameterization')
parser.add_argument('--cdiv', type=float, default=1, help='controlling the updating rate of filter for oscnetplus. For oscnet, it is fixed as 1') # oscnet: default as 1
#for network and dictionary model
parser.add_argument('--num_M', type=int, default=4, help='the number of feature maps at every rotation angle')
parser.add_argument('--num_Q', type=int, default=32, help='the number of channel concatenation')
parser.add_argument('--num_rot', type=int, default=8, help='the number of rotation angles')
parser.add_argument('--S', type=int, default=10, help='Stage number S')
parser.add_argument('--T', type=int, default=3, help='Resblocks number in each ProxNet')
parser.add_argument('--etaM', type=float, default=1, help='stepsize for updating M')
parser.add_argument('--etaX', type=float, default=5, help='stepsize for updating B')
opt = parser.parse_args()
if opt.use_GPU:
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id
def mkdir(path):
folder = os.path.exists(path)
if not folder:
os.makedirs(path)
print("--- new folder... ---")
print("--- " + path + " ---")
else:
print("--- There exsits folder " + path + " ! ---")
out_dir = opt.save_path+ opt.model +'/'
mkdir(out_dir)
input_dir = opt.save_path+'/input/'
mkdir(input_dir)
gt_dir = opt.save_path+'/gt/'
mkdir(gt_dir)
def normalized(X):
maxX = np.max(X)
minX = np.min(X)
X = (X - minX) / (maxX - minX)
return X
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('Total number of parameters: %d' % num_params)
def image_get_minmax():
return 0.0, 1.0
def normalize(data, minmax):
data_min, data_max = minmax
data = np.clip(data, data_min, data_max)
data = data * 255.0
data = data.astype(np.float32)
data = np.expand_dims(np.transpose(np.expand_dims(data, 2), (2, 0, 1)),0)
return data
test_mask = np.load(os.path.join(opt.data_path, 'testmask.npy'))
def test_image(data_path, imag_idx, mask_idx):
txtdir = os.path.join(data_path, 'test_640geo_dir.txt')
mat_files = open(txtdir, 'r').readlines()
gt_dir = mat_files[imag_idx]
file_dir = gt_dir[:-6]
data_file = file_dir + str(mask_idx) + '.h5'
abs_dir = os.path.join(data_path, 'test_640geo/', data_file)
gt_absdir = os.path.join(data_path, 'test_640geo/', gt_dir[:-1])
gt_file = h5py.File(gt_absdir, 'r')
Xgt = gt_file['image'][()]
gt_file.close()
file = h5py.File(abs_dir, 'r')
Xma= file['ma_CT'][()]
XLI =file['LI_CT'][()]
file.close()
M512 = test_mask[:,:,mask_idx]
M = np.array(Image.fromarray(M512).resize((416, 416), PIL.Image.BILINEAR))
Xma = normalize(Xma, image_get_minmax())
Xgt = normalize(Xgt, image_get_minmax())
XLI = normalize(XLI, image_get_minmax())
Mask = M.astype(np.float32)
Mask = np.expand_dims(np.transpose(np.expand_dims(Mask, 2), (2, 0, 1)),0)
non_mask = 1 - Mask
return torch.Tensor(Xma).cuda(), torch.Tensor(Xgt).cuda(), torch.Tensor(XLI).cuda(), torch.Tensor(non_mask).cuda()
def main():
# Build model
print('Loading model ...\n')
if "plus" not in opt.model:
net= OSCNet(opt).cuda()
else:
net= OSCNetplus(opt).cuda()
net.eval()
net.load_state_dict(torch.load(opt.model_dir))
print_network(net)
time_test = 0
count = 0
for imag_idx in range(200): # for original testing, 200 clean CT images
print("imag_idx:",imag_idx)
for mask_idx in range(10): # for original testing, 10 testing metal masks
Xma, X, XLI, M = test_image(opt.data_path, imag_idx, mask_idx)
with torch.no_grad():
if opt.use_GPU:
torch.cuda.synchronize()
start_time = time.time()
X0, ListX, ListA = net(Xma, XLI, M)
end_time = time.time()
dur_time = end_time - start_time
time_test += dur_time
Xoutclip = torch.clamp(ListX[-1] / 255.0, 0, 0.5)
Xgtclip = torch.clamp(X / 255.0, 0, 0.5)
Xmaclip = torch.clamp(Xma / 255.0, 0, 0.5)
Xoutnorm = Xoutclip / 0.5
Xgtnorm = Xgtclip / 0.5
Xmanorm = Xmaclip / 0.5
idx = imag_idx *10+ mask_idx + 1
Xnorm = [Xoutnorm, Xmanorm, Xgtnorm]
dir = [out_dir, input_dir, gt_dir]
save_img.imwrite(idx, dir, Xnorm)
print('Times: ', dur_time)
count += 1
print(100*'*')
if __name__ == "__main__":
main()