-
Notifications
You must be signed in to change notification settings - Fork 93
/
utils.py
executable file
·248 lines (188 loc) · 6.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import sys
import itertools
import numpy as np
from collections import OrderedDict
def aggregate_gradients(gradients):
ground_gradients = [np.zeros(g.shape) for g in gradients[0]]
for gradient in gradients:
for i in range(len(ground_gradients)):
ground_gradients[i] += gradient[i]
return ground_gradients
def compute_CDF(arr, num_bins=100):
"""
usage: x, y = compute_CDF(arr):
plt.plot(x, y)
"""
values, base = np.histogram(arr, bins=num_bins)
cumulative = np.cumsum(values)
return base[:-1], cumulative / float(cumulative[-1])
def convert_indices_to_mask(indices, mask_len):
mask = np.zeros([1, mask_len])
for idx in indices:
mask[0, idx] = 1
return mask
def create_folder_if_not_exists(folder_path):
if not os.path.exists(folder_path):
os.makedirs(folder_path)
def decrease_var(var, min_var, decay_rate):
if var - decay_rate >= min_var:
var -= decay_rate
else:
var = min_var
return var
def discount(x, gamma):
"""
Given vector x, computes a vector y such that
y[i] = x[i] + gamma * x[i+1] + gamma^2 x[i+2] + ...
"""
out = np.zeros(x.shape)
out[-1] = x[-1]
for i in reversed(range(len(x) - 1)):
out[i] = x[i] + gamma * out[i + 1]
# More efficient version:
# scipy.signal.lfilter([1],[1,-gamma],x[::-1], axis=0)[::-1]
return out
def generate_coin_flips(p):
# generate coin flip until first head, with Pr(head) = p
# this follows a geometric distribution
if p == 0:
# infinite sequence
return np.inf
# use geometric distribution
flip_counts = np.random.geometric(p)
return flip_counts
def get_outer_product_boolean_mask(job_dags, executor_limits):
num_nodes = sum([j.num_nodes for j in job_dags])
num_jobs = len(job_dags)
num_exec_limits = len(executor_limits)
mask = np.zeros([num_nodes, num_jobs * num_exec_limits], dtype=np.bool)
# fill in valid entries
base = 0
for i in range(len(job_dags)):
job_dag = job_dags[i]
mask[base : base + job_dag.num_nodes,
i * num_exec_limits : (i + 1) * num_exec_limits] = True
base += job_dag.num_nodes
# reshape into 1D array
mask = np.reshape(mask, [-1])
return mask
def get_poly_baseline(polyfit_model, all_wall_time):
# use 5th order polynomial to get a baseline
# normalize the time
max_time = float(max([max(wall_time) for wall_time in all_wall_time]))
max_time = max(1, max_time)
baselines = []
for i in range(len(all_wall_time)):
normalized_time = [t / max_time for t in all_wall_time[i]]
baseline = polyfit_model[0] * np.power(normalized_time, 5) + \
polyfit_model[1] * np.power(normalized_time, 4) + \
polyfit_model[2] * np.power(normalized_time, 3) + \
polyfit_model[3] * np.power(normalized_time, 2) + \
polyfit_model[4] * np.power(normalized_time, 1) + \
polyfit_model[5]
baselines.append(baseline)
return baselines
def get_wall_time_baseline(all_cum_rewards, all_wall_time):
# do a 5th order polynomial fit over time
# all_cum_rewards: list of lists of cumulative rewards
# all_wall_time: list of lists of physical time
assert len(all_cum_rewards) == len(all_wall_time)
# build one list of all values
list_cum_rewards = list(itertools.chain.from_iterable(all_cum_rewards))
list_wall_time = list(itertools.chain.from_iterable(all_wall_time))
assert len(list_cum_rewards) == len(list_wall_time)
# normalize the time by the max time
max_time = float(max(list_wall_time))
max_time = max(1, max_time)
list_wall_time = [t / max_time for t in list_wall_time]
polyfit_model = np.polyfit(list_wall_time, list_cum_rewards, 5)
baselines = get_poly_baseline(polyfit_model, all_wall_time)
return baselines
def increase_var(var, max_var, increase_rate):
if var + increase_rate <= max_var:
var += increase_rate
else:
var = max_var
return var
def list_to_str(lst):
"""
convert list of number of a string with space
"""
return ' '.join([str(e) for e in lst])
def min_nonzero(x):
min_val = np.inf
for i in x:
if i != 0 and i < min_val:
min_val = i
return min_val
def moving_average(x, N):
return np.convolve(x, np.ones((N,)) / N, mode='valid')
class OrderedSet(object):
def __init__(self, contents=()):
self.set = OrderedDict((c, None) for c in contents)
def __contains__(self, item):
return item in self.set
def __iter__(self):
return iter(self.set.keys())
def __len__(self):
return len(self.set)
def add(self, item):
self.set[item] = None
def clear(self):
self.set.clear()
def index(self, item):
idx = 0
for i in self.set.keys():
if item == i:
break
idx += 1
return idx
def pop(self):
item = next(iter(self.set))
del self.set[item]
return item
def remove(self, item):
del self.set[item]
def to_list(self):
return [k for k in self.set]
def update(self, contents):
for c in contents:
self.add(c)
def progress_bar(count, total, status='', pattern='|', back='-'):
bar_len = 60
filled_len = int(round(bar_len * count / float(total)))
percents = round(100.0 * count / float(total), 1)
bar = pattern * filled_len + back * (bar_len - filled_len)
sys.stdout.write('[%s] %s%s %s\r' % (bar, percents, '%', status))
sys.stdout.flush()
if count == total:
print('')
class SetWithCount(object):
"""
allow duplication in set
"""
def __init__(self):
self.set = {}
def __contains__(self, item):
return item in self.set
def add(self, item):
if item in self.set:
self.set[item] += 1
else:
self.set[item] = 1
def clear(self):
self.set.clear()
def remove(self, item):
self.set[item] -= 1
if self.set[item] == 0:
del self.set[item]
def truncate_experiences(lst):
"""
truncate experience based on a boolean list
e.g., [True, False, False, True, True, False]
-> [0, 3, 4, 6] (6 is dummy)
"""
batch_points = [i for i, x in enumerate(lst) if x]
batch_points.append(len(lst))
return batch_points