-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathring.tex
280 lines (223 loc) · 12.8 KB
/
ring.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
\chapter{Ring}
\section{Basic Concepts}
\begin{definition}{Ring}{}
A \textbf{ring} is a set $R$ together with two binary operations $+$ and $\cdot$ on $R$ such that
\begin{enumerate}[(i)]
\item $(R,+)$ is an abelian group.
\item $(R,\cdot)$ is a monoid.
\item $\cdot$ is distributive over $+$,
\begin{align*}
a\cdot(b+c)=a\cdot b+a\cdot c\\
(a+b)\cdot c=a\cdot c+b\cdot c
\end{align*}
\end{enumerate}
\end{definition}
A ring is a monoid object in the category $\mathsf{Ab}$. In other words, a ring is an $\mathsf{Ab}$-enriched category with only one object.\\
A ring $R$ is an $R$-module over itself.\\
A ring $R$ is a $Z(R)$-algebra and also a $\mathbb{Z}$-algebra. In fact, we have the following category isomorphism
\[
\mathsf{Ring}\cong \mathbb{Z}\text{-}\mathsf{Alg}.
\]
\begin{definition}{Unit Group of a Ring}{}
Let $R$ be a ring. The \textbf{unit group} of $R$ is the group of invertible elements of $R$ under multiplication, denoted by $R^\times$. We can define a functor $(-)^\times:\mathsf{Ring}\to\mathsf{Grp}$ that sends a ring to its unit group
\[
\begin{tikzcd}[ampersand replacement=\&]
\mathsf{Ring}\ \&[-25pt]\&[+10pt]\&[-30pt]\mathsf{Grp}\&[-30pt]\&[-30pt] \\ [-15pt]
R \arrow[dd, "f"{name=L, left}]
\&[-25pt] \& [+10pt]
\& [-30pt]R^{\times}\arrow[dd, "f|_{R^\times}"{name=R}] \\ [-10pt]
\& \phantom{.}\arrow[r, "(-)^\times", squigarrow]\&\phantom{.} \& \\[-10pt]
S \& \& \& S^{\times}
\end{tikzcd}
\]
\end{definition}
\begin{proposition}{Adjunction $\mathbb{Z}\left[-\right]\dashv \left(-\right)^\times$}{}
$(-)^\times:\mathsf{Ring}\to\mathsf{Grp}$ has a left adjoint which sends each group $G$ to the group ring $\mathbb{Z}\left[G\right]$.
\end{proposition}
Next we define the morphisms in the category $\mathsf{Ring}$.
\begin{definition}{Ring Homomorphism}{}
Let $R$, $S$ be rings. A \textbf{ring homomorphism} from $R$ to $S$ is a map $f:R\to S$ such that
\begin{enumerate}[(i)]
\item $f(a+b)=f(a)+f(b)$ for all $a,b\in R$.
\item $f(a\cdot b)=f(a)\cdot f(b)$ for all $a,b\in R$.
\item $f(1_R)=1_S$.
\end{enumerate}
\end{definition}
\begin{definition}{Zero Divisor}{}
Assume that $a$ is an element of a ring $R$.
\begin{itemize}
\item $a$ is called a \textbf{left zero divisor} if there exists a nonzero $x$ in $R$ such that $ax = 0$.
\item $a$ is called a \textbf{right zero divisor} if there exists a nonzero $x$ in $R$ such that $xa = 0$.
\item $a$ is called a \textbf{zero divisor} if there exists a nonzero $x$ in $R$ such that $ax = xa = 0$.
\end{itemize}
\end{definition}
\begin{definition}{Ideal}{}
Let \( R \) be a ring and \( I \subseteq R \) be an additive subgroup.
\begin{itemize}
\item \textbf{Left ideal}: If for every \( r \in R \), \( rI \subseteq I \), then \( I \) is called a left ideal of \( R \).
\item \textbf{Right ideal}: If for every \( r \in R \), \( Ir \subseteq I \), then \( I \) is called a right ideal of \( R \).
\item \textbf{Two-sided ideal}: If \( I \) is both a left and a right ideal, then it is called a two-sided ideal.
\end{itemize}
A left, right, or two-sided ideal \( I \) that satisfies \( I \ne R \) is called a \textbf{proper ideal}. In commutative rings, left and right ideals are the same and are simply called ideals.
\end{definition}
\begin{definition}{Kernel of a Ring Homomorphism}{}
Let $f:R\to S$ be a ring homomorphism. The \textbf{kernel} of $f$ is the set
\[
\ker f=f^{-1}(0_S)=\{r\in R\mid f(r)=0_S\}.
\]
It is easy to check that $\ker f$ is a two-sided ideal of $R$.
\end{definition}
\begin{definition}{Reduced Ring}{}
A ring $R$ is called \textbf{reduced} if it has no nonzero nilpotent elements, or equivalently, if for any $x\in R$, $x^2=0\implies x=0$.
\end{definition}
\begin{proposition}{Examples of Reduced Ring}{}
\begin{enumerate}[(i)]
\item Subrings, products, and localizations of reduced commutative rings are again reduced rings.
\item Every integral domain is reduced.
\item $\mathbb{Z}/n\mathbb{Z}$ is reduced if and only if $n=0$ or $n$ is square-free.
\end{enumerate}
\end{proposition}
\begin{proof}
\begin{enumerate}[(i)]
\item Let $R$ be a reduced ring and $S$ be a multiplicative subset of $R$. For any $\frac{f}{s}\in S^{-1}R$, if $\left(\frac{f}{s}\right)^n=\frac{f^n}{s^n}=0$, then there exists $t\in S$ such that $tf^n=0$, which implies $(tf)^n=0$. Since $R$ is reduced, we have $tf=0$, which means $\frac{f}{s}=0$. Hence $S^{-1}R$ is reduced.
\end{enumerate}
\end{proof}
\begin{definition}{Local Ring}{}
A ring $R$ is called \textbf{local} if it has a unique maximal ideal.
\end{definition}
\begin{definition}{Local Ring Homomorphism}{}
Let $f:R\to S$ be a ring homomorphism and $\mathfrak{m}_R$ and $\mathfrak{m}_S$ be the unique maximal ideals of $R$ and $S$ respectively. Then $f$ is called a \textbf{local ring homomorphism} if $f(\mathfrak{m}_R)\subseteq \mathfrak{m}_S$ or equivalently $f^{-1}(\mathfrak{m}_S)=\mathfrak{m}_R$.
\end{definition}
\section{Construction}
\subsection{Initial Object and Terminal Object}
\begin{proposition}{Initial Object in $\mathsf{Ring}$}{}
The ring $\mathbb{Z}$ is the initial object in $\mathsf{Ring}$. That is, for any ring $R$, there exists a unique ring homomorphism
\begin{align*}
\varphi:\mathbb{Z}&\longrightarrow R\\
n&\longmapsto n\cdot 1_R
\end{align*}
\end{proposition}
\begin{definition}{Characteristic of a Ring}{}
Let $R$ be a ring and $\varphi:\mathbb{Z}\to R$ be the unique ring homomorphism. Then $\mathrm{\varphi}\cong \mathbb{Z}/n\mathbb{Z}$, where $n=\in\mathbb{N}$.
The \textbf{characteristic} of $R$ is defined to be $n$, denoted by $\mathrm{char}(R)$.
Equivalently, $\mathrm{char}(R)$ is the smallest positive integer $n$ such that $n\cdot 1_R=0_R$ if such an integer exists. Otherwise, the characteristic of $R$ is $0$.
\end{definition}
\begin{proposition}{Terminal Object in $\mathsf{Ring}$}{}
The ring $\mathbb{Z}$ is the initial object in $\{0\}$.
\end{proposition}
Since the forgetful functor $\mathsf{Ring}\to\mathsf{Set}$ is a right adjoint, it preserves all limits. Hence the underlying set of the terminal object in $\mathsf{Ring}$ is the terminal object in $\mathsf{Set}$, which is the singleton set $\{*\}$.
\subsection{Quotient Object}
\begin{definition}{Quotient Ring}{}
Let $R$ be a ring and $I$ be a two-sided ideal of $R$. Equip the additive group \( R / I \) with the following multiplication operation:
\[
(r+I) \cdot (s+I) := (rs + I), \quad r, s \in R .
\]
Then \( R / I \) forms a ring, which is called the \textbf{quotient ring of \( R \) modulo \( I \)}. The quotient map \( R \rightarrow R / I \) is called the quotient homomorphism.
\end{definition}
\begin{proposition}{Universal Property of Quotient Rings}{}
Let $R$ be a ring and $I$ be a two-sided ideal of $R$. Then the quotient map $\pi:R\to R/I$ is a surjective ring homomorphism with kernel $I$. Moreover, for any ring $S$ and any ring homomorphism $f:R\to S$ such that $I\subseteq\ker f$, there exists a unique ring homomorphism $\bar{f}:R/I\to S$ such that the following diagram commutes
\[
\begin{tikzcd}[ampersand replacement=\&]
R \arrow[r, "f"] \arrow[d, "\pi"'] \& S \\
R/I \arrow[ru, "\exists!\bar{f}"'] \&
\end{tikzcd}
\]
\end{proposition}
\begin{proposition}{Kernel of a Ring Homomorphism is a Two-sided Ideal}{}
Let $f:R\to S$ be a ring homomorphism. Then $\ker f$ is an two-sided ideal of $R$.
\end{proposition}
\begin{proposition}{Image of a Ring Homomorphism is a Subring}{}
Let $f:R\to S$ be a ring homomorphism. Then $\mathrm{im}f$ is a subring of $S$.
\end{proposition}
\begin{theorem}{The Fundamental Theorem of Ring Homomorphisms}{}
Let $f:R\to S$ be a ring homomorphism. Then $R/\ker f\cong \mathrm{im}f$.
\end{theorem}
\subsection{Free Object}
\begin{definition}{Free Ring}{}
Let $S$ be a set. The \textbf{free ring} on $S$, denoted by $\mathrm{Free}_{\mathsf{Ring}}(S)$, together with a function $\iota:S\to \mathrm{Free}_{\mathsf{Ring}}(S)$, is defined by the following universal property: for any ring $R$ and any function $f:S\to R$, there exists a unique ring homomorphism $\widetilde{f}:\mathrm{Free}_{\mathsf{Ring}}(S)\to R$ such that the following diagram commutes
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
\mathrm{Free}_{\mathsf{Ring}}(S)\arrow[r, dashed, "\exists !\,\widetilde{f}"] \& R \\[0.3cm]
S\arrow[u, "\iota"] \arrow[ru, "f"'] \&
\end{tikzcd}
\end{center}
The free ring $\mathrm{Free}_{\mathsf{Ring}}(S)$ can be contructed as the free $\mathbb{Z}$-algebra on $\mathrm{Free}_{\mathsf{Mon}}(S)$
\[
\mathrm{Free}_{\mathsf{Ring}}(S)\cong\bigoplus_{w\in\mathrm{Free}_{\mathsf{Mon}}(S)}\mathbb{Z}w.
\]
\end{definition}
\begin{example}{Forgetful Functor $U:\mathsf{Ring}\to\mathsf{Set}$}{}
The forgetful functor $U:\mathsf{Ring}\to\mathsf{Set}$ forgets the ring structure and retains only the underlying set.
\begin{enumerate}[(i)]
\item $U$ is representable by $\left(\mathbb{Z}[x],x\right)$.
\item $U$ is faithful but not full.
\end{enumerate}
\end{example}
\begin{proposition}{Free-Forgetful Adjunction $\mathrm{Free}_{\mathsf{Ring}}\dashv U$}{}
The free ring functor $\mathrm{Free}_{\mathsf{Ring}}$ is left adjoint to the forgetful functor $U:\mathsf{Ring}\to\mathsf{Set}$.
\end{proposition}
\subsection{Graded Object}
\begin{definition}{$I$-Graded Ring (Internal Definition)}{}
Let $(I,+)$ be a monoid. An \textbf{$I$-graded ring} is a ring $(R,+,\cdot)$ together with a family of subgroups $(R_i)_{i\in I}$ of $(R,+)$ such that
\begin{enumerate}[(i)]
\item $R=\bigoplus_{i\in I}R_i$.
\item $R_iR_j\subseteq R_{i+j}$ for all $i,j\in I$.
\end{enumerate}
Elements in $R_i-\{0\}$ are called \textbf{homogeneous elements of degree $i$}.
\end{definition}
\begin{definition}{Graded Ideal}{}
Let $R$ be an $I$-graded ring with grading $(R_i)_{i\in I}$. An ideal $J$ of $R$ is called \textbf{graded} if $J=\bigoplus_{i\in I}J\cap R_i$.
\end{definition}
\begin{proposition}{Homogeneous Elements Generate Graded Ideal}{}
Let $R$ be a $I$-graded ring with grading $(R_i)_{i\in I}$ and $\mathfrak{a}$ be a two-sided ideal of $R$. Then $\mathfrak{a}$ is a graded ideal if and only if $\mathfrak{a}$ is generated by homogeneous elements.
\end{proposition}
\begin{prf}
If $\mathfrak{a}$ is a graded ideal, then
\[
\mathfrak{a}=\bigoplus_{i\in I}\mathfrak{a}\cap R_i=\left\langle \bigcup_{i\in I}\left( \mathfrak{a}\cap R_i\right)\right\rangle,
\]
which means $\mathfrak{a}$ is generated by homogeneous elements.\\
Assume $\mathfrak a$ is generated by homogeneous elements, say $\mathfrak a = \left\langle\, \bigcup_{i\in I}H_i \right\rangle$, where $H_i\subseteq R_i$. Let $H=\bigcup_{i\in I}H_i $. Then for any $a\in\mathfrak a$, it can be written as
\[
a=\sum_{k=1}^nr_k h_ks_k.
\]
where $r_k,s_k\in R$, $h_k\in H$. Assume that $r_k,s_k$ have the following decomposition
\begin{align*}
r_k=\sum_{i\in I}r_{k,i},\quad r_{k,i}\in R_i,\\
s_k=\sum_{j\in I}s_{k,j},\quad s_{k,j}\in R_j,
\end{align*}
Then we have
\[
a=\sum_{k=1}^n\left(\sum_{i\in I}r_{k,i}\right)h_k\left(\sum_{j\in I}s_{k,j}\right)=\sum_{k=1}^n\sum_{i\in I}\sum_{j\in I} r_{k,i}h_ks_{k,j}.
\]
Suppose $h_k\in R_m$, then $r_{k,i}h_ks_{k,j}\in R_{i+m+j}$. Also we note $h_k\in \mathfrak{a}$ implies $r_{k,i}h_ks_{k,j}\in \mathfrak{a}$. Hence
\[
a=\sum_{k=1}^n\sum_{i\in I}\sum_{j\in I} r_{k,i}h_ks_{k,j}\in \sum_{i\in I} \mathfrak{a} \cap R_i=\bigoplus_{i\in I}\mathfrak{a}\cap R_i.
\]
It is clear that $\bigoplus\limits_{i\geq 0}(\mathfrak a\cap R_i) \subseteq \mathfrak a $. Therefore, we show that
\[
\mathfrak a=\bigoplus_{i\geq 0}(\mathfrak a\cap R_i) ,
\]
which means $\mathfrak{a}$ is a graded ideal.
\end{prf}
\section{Category Properties}
The category $\mathsf{Ring}$ is both complete and cocomplete.
\begin{proposition}{Equivalence Chracaterization of Monomorphisms in $\mathsf{Ring}$}{}
Let $f:R\to S$ be a ring homomorphism. Then the following are equivalent:
\begin{enumerate}[(i)]
\item $f$ is a monomorphism.
\item $f$ is injective.
\item $\ker f=\{0_R\}$.
\end{enumerate}
\end{proposition}
\begin{proposition}{Sujective Ring Homomorphisms are Epimorphisms}{}
Every surjective homomorphism of rings is an epimorphism. However, the converse is not true in general.
\end{proposition}
\begin{proposition}{Equivalence Chracaterization of Isomorphisms in $\mathsf{Ring}$}{}
Let $f:R\to S$ be a ring homomorphism. Then the following are equivalent:
\begin{enumerate}[(i)]
\item $f$ is an isomorphism.
\item $f$ is bijective.
\item $\ker f=\{0_R\}$ and $\mathrm{im}f=S$.
\end{enumerate}
\end{proposition}