-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathplot_correlation_voc07.m
323 lines (282 loc) · 12.1 KB
/
plot_correlation_voc07.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
function plot_correlation_voc07()
% Plots for analyzing the correlation between detector performance
% (LLDA-DPM and R-CNN) on the different proposal methods and different
% proxy measures based on recall of the proposals.
%
% based on Piotr's blog post:
% https://pdollar.wordpress.com/2014/11/18/evaluating-object-proposals/
methods = get_method_configs();
n_methods = numel(methods);
method_selection = 1:n_methods;
method_selection([14 16 19:25]) = [];
% Recall matrix used for experiments nThresholds x nAlgorithms
ld = load('data/pascal_voc07_test_recall.mat');
R = ld.recalls';
T = ld.iou_thresholds;
ARs = ld.ARs(:);
ARs_per_class = ld.ARs_per_class';
% define algorithm names, IoU thresholds, recall values and AP scores
nms={methods.name};
ld = load('data/pascal_voc07_test_llda_dpm_aps.mat');
axis_lim = [0.5 0.975 0.6 1];
% the following three lines reproduce Piotr's plots
% whitelist = [8 7 13 9 15 1 2 4 10 3 6 12];
% AP = ld.aps(:,1)'; AP = AP(whitelist);
% ploteroo(T, R(:,whitelist), AP, nms(whitelist), axis_lim);
llda_dpm_AP = ld.aps(:,2)';
llda_dpm_AP_per_class = ld.aps_per_class(:,:,2)';
plot_correlation_over_recall(T, R(:,method_selection), ...
llda_dpm_AP(method_selection), nms(method_selection), axis_lim);
scale_and_save('figures/LLDA_DPM_mAP_recall_voc07.pdf');
ld = load('data/pascal_voc07_test_rcnn_aps.mat');
rcnn_AP = ld.aps;
rcnn_AP_per_class = ld.aps_per_class';
plot_correlation_over_recall(T, R(:,method_selection), ...
rcnn_AP(method_selection), nms(method_selection), axis_lim);
scale_and_save('figures/RCNN_mAP_recall_voc07.pdf');
ld = load('data/pascal_voc07_test_frcn_aps.mat');
frcn_AP = ld.aps;
frcn_AP_per_class = ld.aps_per_class';
plot_correlation_over_recall(T, R(:,method_selection), ...
frcn_AP(method_selection), nms(method_selection), axis_lim);
scale_and_save('figures/FRCN_mAP_recall_voc07.pdf');
ld = load('data/pascal_voc07_test_frcn_noregr_aps.mat');
frcn_noregr_AP = ld.aps;
frcn_noregr_AP_per_class = ld.aps_per_class';
plot_correlation_over_recall(T, R(:,method_selection), ...
frcn_noregr_AP(method_selection), nms(method_selection), axis_lim);
scale_and_save('figures/FRCN_noregr_mAP_recall_voc07.pdf');
% Average recall plots
plot_weighted_area_color_coded(ARs(method_selection), ...
llda_dpm_AP(method_selection), methods(method_selection), [0 0.6 10 38]);
scale_and_save('figures/LLDA_DPM_mAP_recall_area_voc07.pdf');
axlim = [0 0.6 12 67];
plot_weighted_area_color_coded(ARs(method_selection), ...
rcnn_AP(method_selection), methods(method_selection), axlim);
scale_and_save('figures/RCNN_mAP_recall_area_voc07.pdf');
plot_weighted_area_color_coded(ARs(method_selection), ...
frcn_AP(method_selection), methods(method_selection), axlim);
scale_and_save('figures/FRCN_mAP_recall_area_voc07.pdf');
frcn_AR = mean(R(T>=0.5 & T<=0.7,:), 1);
plot_weighted_area_color_coded(frcn_AR(method_selection)', ...
frcn_AP(method_selection), methods(method_selection), [0 1 12 67]);
scale_and_save('figures/FRCN_mAP_recall_area0.5_0.8_voc07.pdf');
plot_weighted_area_color_coded(ARs(method_selection), ...
frcn_noregr_AP(method_selection), methods(method_selection), axlim);
scale_and_save('figures/FRCN_noregr_mAP_recall_area_voc07.pdf');
% Average recall plots per class
per_class_method_selection = method_selection;
% plot_AR_per_class(ARs_per_class(:,per_class_method_selection), ...
% llda_dpm_AP_per_class(:,per_class_method_selection), methods(per_class_method_selection), [0 .85 0 65]);
% scale_and_save('figures/LLDA_DPM_correlation_per_class_lines_voc07.pdf', 6, 7);
% plot_AR_per_class(ARs_per_class(:,per_class_method_selection), ...
% rcnn_AP_per_class(:,per_class_method_selection), methods(per_class_method_selection), [0 .85 0 85]);
% scale_and_save('figures/RCNN_correlation_per_class_lines_voc07.pdf', 6, 7);
% plot_AR_per_class(ARs_per_class(:,per_class_method_selection), ...
% frcn_AP_per_class(:,per_class_method_selection), methods(per_class_method_selection), [0 .85 0 90]);
% scale_and_save('figures/FRCN_correlation_per_class_lines_voc07.pdf', 6, 7);
% plot_AR_per_class(ARs_per_class(:,per_class_method_selection), ...
% frcn_noregr_AP_per_class(:,per_class_method_selection), methods(per_class_method_selection), [0 .85 0 90]);
% scale_and_save('figures/FRCN_noregr_correlation_per_class_lines_voc07.pdf', 6, 7);
% plot_correlation_per_class(ARs_per_class(:,per_class_method_selection), ...
% llda_dpm_AP_per_class(:,per_class_method_selection), true);
% scale_and_save('figures/LLDA_DPM_correlation_per_class_colorbars_voc07.pdf', 6, 12);
% plot_correlation_per_class(ARs_per_class(:,per_class_method_selection), ...
% rcnn_AP_per_class(:,per_class_method_selection), true);
% scale_and_save('figures/RCNN_correlation_per_class_colorbars_voc07.pdf', 6, 12);
% plot_correlation_per_class(ARs_per_class(:,per_class_method_selection), ...
% frcn_AP_per_class(:,per_class_method_selection), true);
% scale_and_save('figures/FRCN_correlation_per_class_colorbars_voc07.pdf', 6, 12);
% plot_correlation_per_class(ARs_per_class(:,per_class_method_selection), ...
% frcn_noregr_AP_per_class(:,per_class_method_selection), true);
% scale_and_save('figures/FRCN_noregr_correlation_per_class_colorbars_voc07.pdf', 6, 12);
plot_correlation_per_class_multi(ARs_per_class(:,per_class_method_selection), ...
cat(1, llda_dpm_AP_per_class(:,per_class_method_selection), ...
rcnn_AP_per_class(:,per_class_method_selection), ...
frcn_noregr_AP_per_class(:,per_class_method_selection), ...
frcn_AP_per_class(:,per_class_method_selection)), ...
{'LM-LLDA bbpred', 'R-CNN', 'Fast R-CNN', 'Fast R-CNN bbpred'}, ...
'bars');
scale_and_save('figures/all_detectors_correlation_per_class_colorbars_voc07.pdf', 7, 16);
% plot_correlation_per_class(ARs_per_class(:,per_class_method_selection), ...
% llda_dpm_AP_per_class(:,per_class_method_selection), false);
% scale_and_save('figures/LLDA_DPM_correlation_per_class_bars_voc07.pdf', 6, 12);
% plot_correlation_per_class(ARs_per_class(:,per_class_method_selection), ...
% rcnn_AP_per_class(:,per_class_method_selection), false);
% scale_and_save('figures/RCNN_correlation_per_class_bars_voc07.pdf', 6, 12);
end
function scale_and_save(output_filename, hei, wid)
s = 0.13;
if nargin < 2, hei = 40*s; end
if nargin < 3, wid = 45*s; end
set(gcf, 'Units','centimeters', 'Position',[0 0 wid hei]);
set(gcf, 'PaperPositionMode','auto');
printpdf(output_filename);
end
function plot_weighted_area(areas, AP, nms, axis_lim)
S=corrcoef([areas' AP']); s = S(1,end);
figure; plot(areas, AP, 'dr'); grid on; text(areas+.015,AP,nms);
xlabel(sprintf('weighted area under recall')); axis(axis_lim)
title(sprintf('correlation=%.3f',s)); ylabel('mAP'); hold on;
p=polyfit(areas,AP,1); line([0 1],[p(2),sum(p)],'Color',[1 1 1]/3); hold off
end
function colors = class_colors()
colors = [[74,136,55],
[127,137,221],
[209,79,44],
[95,40,42],
[209,68,117],
[218,145,59],
[117,171,189],
[205,132,115],
[54,70,41],
[198,147,179],
[204,104,203],
[114,198,70],
[64,74,86],
[121,60,105],
[86,117,53],
[121,113,53],
[111,182,140],
[138,75,38],
[189,175,70],
[82,92,146]]/255;
end
function plot_correlation_per_class_multi(AR_per_class, AP_per_class, legend_strs, type)
colors = [
24,98,169
236,178,0
30,129,43
211,118,166
]./255;
% 255, 197, 108
% 110, 197, 233
% 0, 58, 111
% 255, 89, 89
load('data/short_classes.mat');
n = numel(classes);
n_detectors = numel(legend_strs);
S=corrcoef([AR_per_class' AP_per_class']);
Spd = cell(1, n_detectors);
for i = 1:n_detectors
Spd{i} = diag(S((i*n+1):((i+1)*n), 1:n));
end
Spd = cat(2, Spd{:});
figure;
if strcmp(type, 'lines')
for i = 1:n_detectors
plot(1:n, Spd(:,i), '.-', 'Color', colors(i,:));
if i == 1; hold on; end
end
legend(legend_strs);
elseif strcmp(type, 'bars')
hb = bar(1:n, Spd);
for i = 1:n_detectors
set(hb(i), 'FaceColor', colors(i,:), 'EdgeColor', colors(i,:));
end
set(gca,'XTick',(1:numel(classes))-0.3,'XTickLabel',classes);
set(gca,'XTickLabelRotation',60);
xlim([0,21]);
ylim([0.6 1]);
ylabel('correlation with AP');
legend(legend_strs, 'Location', 'SouthEast');
else
error('unknown type');
end
end
function plot_correlation_per_class(AR_per_class, AP_per_class, colorful)
colors = class_colors();
load('data/short_classes.mat');
n = numel(classes);
S=corrcoef([AR_per_class' AP_per_class']); S=diag(S(n+1:end,1:n));
figure; hold on;
if colorful
for i = 1:n
bar(i, S(i), 'FaceColor', colors(i,:), 'EdgeColor', colors(i,:));
hold on;
end
else
bar(S, 'FaceColor', [31,120,180]/256, 'EdgeColor', [31,120,180]/256);
end
% bar(S);
set(gca,'XTick',(1:numel(classes))-0.3,'XTickLabel',classes);
set(gca,'XTickLabelRotation',60);
xlim([0,21]);
ylim([0.6 1]);
ylabel('correlation with AP');
end
function plot_AR_per_class(AR_per_class, AP_per_class, methods, axis_lim)
colors = class_colors();
load('data/short_classes.mat');
S=corrcoef([AR_per_class(:) AP_per_class(:)]); s = S(1,end);
figure;
for c = 1:numel(classes), cls = classes{c};
for i = 1:numel(methods)
plot(AR_per_class(c,i), AP_per_class(c,i), 'o', 'MarkerSize', 3, 'Color', colors(c,:), 'LineWidth', 0.5);
hold on;
end
p=polyfit(AR_per_class(c,:),AP_per_class(c,:),1); line([0 1],[p(2),sum(p)],'Color',colors(c,:));
end
grid on;
xlabel(sprintf('average recall'));
ylabel('AP'); hold off;
axis(axis_lim);
% move the title inside of the plot
v = axis;
handle = title(sprintf('correlation=%.3f',s));
titlepos = [(v(2)-v(1))*0.5+v(1), (v(4)-v(3))*0.89+v(3), 0];
set(handle, 'Position', titlepos);
end
function plot_weighted_area_color_coded(areas, AP, methods, axis_lim)
AP = AP(:);
S=corrcoef([areas AP]); s = S(1,end);
figure;
for i = 1:numel(methods)
plot(areas(i), AP(i), '.', 'MarkerSize', 20, 'Color', methods(i).color, 'LineWidth', 1.5);
hold on;
end
grid on;
xlabel(sprintf('average recall')); axis(axis_lim)
% title(sprintf('correlation=%.3f',s));
ylabel('mAP');
p=polyfit(areas,AP,1); line([0 1],[p(2),sum(p)],'Color',[1 1 1]/3); hold off
% move the title inside of the plot
v = axis;
handle = title(sprintf('correlation=%.3f',s));
titlepos = [(v(2)-v(1))*0.5+v(1), (v(4)-v(3))*0.89+v(3), 0];
set(handle, 'Position', titlepos);
end
function ploteroo(T, R, AP, nms, axis_lim)
% plot correlation versus IoU and compute best threshold t
S=corrcoef([R' AP']); S=S(1:end-1,end); [s,t]=max(S);
figure(); plot(T,S,'-or'); xlabel('IoU'); ylabel('corr'); grid on;
% plot AP versus recall at single best threshold t
figure(); R1=R(t,:); plot(R1,AP,'dg'); grid on; text(R1+.015,AP,nms);
xlabel(sprintf('recall at IoU=%.3f',T(t))); axis(axis_lim)
title(sprintf('correlation=%.3f',s)); ylabel('mAP'); hold on;
p=polyfit(R1,AP,1); line([0 1],[p(2),sum(p)],'Color',[1 1 1]/3); hold off
% plot AP versus recall for a series of thresholds
figure;
for t = 1:20
subplot(4,5,t);
R1=R(t,:); plot(R1,AP,'dr'); grid on; %text(R1+.015,AP,nms);
xlabel(sprintf('recall at IoU=%.3f',T(t))); axis(axis_lim)
title(sprintf('correlation=%.3f',S(t))); ylabel('mAP'); hold on;
p=polyfit(R1,AP,1); line([0 1],[p(2),sum(p)],'Color',[1 1 1]/3); hold off
end
% compute correlation against optimal range of thrs(a:b)
n=length(T); S=zeros(n,n);
for a=1:n, for b=a:n, s=corrcoef(sum(R(a:b,:),1),AP); S(a,b)=s(2); end; end
[s,t]=max(S(:)); [a,b]=ind2sub([n n],t); R1=mean(R(a:b,:),1);
figure(); plot(R1,AP,'dg'); grid on; text(R1+.015,AP,nms);
xlabel(sprintf('recall at IoU=%.3f-%.3f',T(a),T(b))); axis(axis_lim)
title(sprintf('correlation=%.3f',s)); ylabel('mAP'); hold on;
p=polyfit(R1,AP,1); line([0 1],[p(2),sum(p)],'Color',[1 1 1]/3); hold off
end
function plot_correlation_over_recall(T, R, AP, nms, axis_lim)
S=corrcoef([R' AP']); S=S(1:end-1,end);
figure(); xlim([T(1), T(end-1)]);
plot(T,S,'.-', 'Color', [31,120,180]/256, 'MarkerSize', 20);
axis(axis_lim);
xlabel('IoU overlap threshold'); ylabel('correlation with mAP'); grid on;
end