-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathplot_recall_ILSVRC2013.m
121 lines (104 loc) · 4.36 KB
/
plot_recall_ILSVRC2013.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
function plot_recall_ILSVRC2013()
% Plot the recall of ILSVRC2013 validation set ground truth for all methods.
%
% This function requires the proposals to already be saved to disk. It will
% compute a matching between ground truth and proposals (if the result is not
% yet found on disk) and then plot recall curves. The plots are saved to
% figures/.
val = load('data/ILSVRC2013_val_annotations.mat');
methods = get_method_configs();
methods([14 16 19:24]) = [];
valid_methods = compute_best_candidates(val, methods);
methods = methods(valid_methods);
plot_legend(methods);
printpdf('figures/imagenet_recall_legend.pdf');
fprintf('\n\n');
for i = 1:numel(methods)
fprintf('Valid data for plots: %s\n', methods(i).name);
end
fh = figure;
plot_overlap_recall_curve({methods.best_imagenet_candidates_file}, methods, 100, fh, true, 'none');
hei = 10;
wid = 10;
set(gcf, 'Units','centimeters', 'Position',[0 0 wid hei]);
set(gcf, 'PaperPositionMode','auto');
printpdf('figures/imagenet_recall_100.pdf')
fh = figure;
plot_overlap_recall_curve({methods.best_imagenet_candidates_file}, methods, 1000, fh, false, 'none');
hei = 10;
wid = 10;
set(gcf, 'Units','centimeters', 'Position',[0 0 wid hei]);
set(gcf, 'PaperPositionMode','auto');
printpdf('figures/imagenet_recall_1000.pdf')
fh = figure;
plot_overlap_recall_curve({methods.best_imagenet_candidates_file}, methods, 10000, fh, false, 'none');
hei = 10;
wid = 10;
set(gcf, 'Units','centimeters', 'Position',[0 0 wid hei]);
set(gcf, 'PaperPositionMode','auto');
printpdf('figures/imagenet_recall_10000.pdf')
plot_num_candidates_auc({methods.best_imagenet_candidates_file}, methods, 'imagenet_');
end
function valid_methods = compute_best_candidates(testset, methods)
num_annotations = numel(testset.pos);
candidates_thresholds = round(10 .^ (0:0.5:4));
num_candidates_thresholds = numel(candidates_thresholds);
valid_methods = false(numel(methods), 1);
for method_idx = 1:numel(methods)
method = methods(method_idx);
fprintf('%s\n', method.name);
try
load(method.best_imagenet_candidates_file, 'best_candidates');
valid_methods(method_idx) = true;
continue;
catch
end
% preallocate
best_candidates = [];
best_candidates(num_candidates_thresholds).candidates_threshold = [];
best_candidates(num_candidates_thresholds).best_candidates = [];
for i = 1:num_candidates_thresholds
best_candidates(i).candidates_threshold = candidates_thresholds(i);
best_candidates(i).best_candidates.candidates = zeros(num_annotations, 4);
best_candidates(i).best_candidates.iou = zeros(num_annotations, 1);
best_candidates(i).image_statistics(numel(testset.impos)).num_candidates = 0;
end
files_missing = false;
pos_range_start = 1;
for j = 1:numel(testset.impos)
tic_toc_print('evalutating %s: %d/%d\n', method.name, j, numel(testset.impos));
pos_range_end = pos_range_start + size(testset.impos(j).boxes, 1) - 1;
assert(pos_range_end <= num_annotations);
% tic_toc_print('sampling candidates for image %d/%d\n', j, numel(testset.impos));
[~,img_id,~] = fileparts(testset.impos(j).im);
for i = 1:num_candidates_thresholds
try
[candidates, scores] = get_candidates(method, img_id, ...
candidates_thresholds(i));
catch
fprintf('%s candidates for %s missing\n', method.name, img_id);
files_missing = true;
break;
end
if isempty(candidates)
impos_best_ious = zeros(size(testset.impos(j).boxes,1),1);
impos_best_boxes = zeros(size(testset.impos(j).boxes,1),4);
else
[impos_best_ious, impos_best_boxes] = closest_candidates(...
testset.impos(j).boxes, candidates);
end
best_candidates(i).best_candidates.candidates(pos_range_start:pos_range_end,:) = impos_best_boxes;
best_candidates(i).best_candidates.iou(pos_range_start:pos_range_end) = impos_best_ious;
best_candidates(i).image_statistics(j).num_candidates = size(candidates, 1);
end
if files_missing
break;
end
pos_range_start = pos_range_end + 1;
end
valid_methods(method_idx) = ~files_missing;
if ~files_missing
save(method.best_imagenet_candidates_file, 'best_candidates');
end
end
end