-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification.py
56 lines (42 loc) · 1.41 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
n_data=torch.ones(100,2)
x0=torch.normal(2*n_data,1)
y0=torch.zeros(100)
x1=torch.normal(-2*n_data,1)
y1=torch.ones(100)
x=torch.cat((x0,x1),0).type(torch.FloatTensor)
y=torch.cat((y0,y1),).type(torch.LongTensor)
x,y=Variable(x),Variable(y)
# plt.scatter(x.data.numpy()[:,0],x.data.numpy()[:,1],c=y.data.numpy(),s=100,lw=0)
# plt.show()
class Net(torch.nn.Module):
def __init__(self,n_feature,n_hidden,n_output):
super(Net,self).__init__()
self.hidden=torch.nn.Linear(n_feature,n_hidden)
self.predict=torch.nn.Linear(n_hidden,n_output)
def forward(self,x):
x=F.relu(self.hidden(x))
x=self.predict(x)
return x
net=Net(2,10,2)
print(net)
optimizer=torch.optim.SGD(net.parameters(),lr=0.5)
loss_func=torch.nn.CrossEntropyLoss()
for t in range(100):
out=net(x)
loss=loss_func(out,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if t % 2 ==0:
plt.cla()
prediction=torch.max(F.softmax(out),1)[1]
pred_y=prediction.data.numpy().squeeze()
target_y=y.data.numpy()
plt.scatter(x.data.numpy()[:,0],x.data.numpy()[:,1],c=pred_y,s=100,lw=0)
accuracy=sum(pred_y==target_y)/200
plt.text(1.5,-4,'Accuracy=%.2f' % accuracy, fontdict={'size':20,'color':'red'})
plt.pause(0.1)