-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression.py
51 lines (38 loc) · 1.15 KB
/
regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
x=torch.unsqueeze(torch.linspace(-1,1,100),dim=1)
y=x.pow(2)+0.2*torch.rand(x.size())
x,y=Variable(x),Variable(y)
# plt.scatter(x.data.numpy(),y.data.numpy())
# plt.show()
class Net(torch.nn.Module):
def __init__(self,n_feature,n_hidden,n_output):
super(Net, self).__init__()
self.hidden=torch.nn.Linear(n_feature,n_hidden)
self.predict=torch.nn.Linear(n_hidden,n_output)
def forward(self,x):
x=F.relu(self.hidden(x))
x=self.predict(x)
return x
net=Net(1,10,1)
print(net)
plt.ion()
plt.show()
optimizer=torch.optim.SGD(net.parameters(),lr=0.5)
loss_func=torch.nn.MSELoss()
for t in range(100):
prediction=net(x)
loss=loss_func(prediction,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if t%5 == 0:
plt.cla()
plt.scatter(x.data.numpy(),y.data.numpy())
plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
plt.text(0.5,0,'Loss=%.4f' % loss.data, fontdict={'size':20,'color':'red'})
plt.pause(0.1)
plt.ioff()
plt.show()