-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathmain.cpp
228 lines (212 loc) · 7.37 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
using namespace std;
class YOLO
{
public:
YOLO(string modelpath, float confThreshold, float nmsThreshold, float objThreshold);
Mat detect(Mat& frame);
private:
const float mean[3] = { 0.485, 0.456, 0.406 };
const float std[3] = { 0.229, 0.224, 0.225 };
const float anchors[3][6] = { {3,9,5,11,4,20}, {7,18,6,39,12,31},{19,50,38,81,68,157} };
const float stride[3] = { 8.0, 16.0, 32.0 };
const string classesFile = "bdd100k.names";
const int inpWidth = 640;
const int inpHeight = 640;
float confThreshold;
float nmsThreshold;
float objThreshold;
const bool keep_ratio = true;
vector<string> classes;
Net net;
Mat resize_image(Mat srcimg, int* newh, int* neww, int* top, int* left);
void normalize(Mat& srcimg);
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
};
YOLO::YOLO(string modelpath, float confThreshold, float nmsThreshold, float objThreshold)
{
this->confThreshold = confThreshold;
this->nmsThreshold = nmsThreshold;
this->objThreshold = objThreshold;
ifstream ifs(this->classesFile.c_str());
string line;
while (getline(ifs, line)) this->classes.push_back(line);
this->net = readNet(modelpath);
}
Mat YOLO::resize_image(Mat srcimg, int* newh, int* neww, int* top, int* left)
{
int srch = srcimg.rows, srcw = srcimg.cols;
*newh = this->inpHeight;
*neww = this->inpWidth;
Mat dstimg;
if (this->keep_ratio && srch != srcw)
{
float hw_scale = (float)srch / srcw;
if (hw_scale > 1)
{
*newh = this->inpHeight;
*neww = int(this->inpWidth / hw_scale);
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
*left = int((this->inpWidth - *neww) * 0.5);
copyMakeBorder(dstimg, dstimg, 0, 0, *left, this->inpWidth - *neww - *left, BORDER_CONSTANT, 0);
}
else
{
*newh = (int)this->inpHeight * hw_scale;
*neww = this->inpWidth;
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
*top = (int)(this->inpHeight - *newh) * 0.5;
copyMakeBorder(dstimg, dstimg, *top, this->inpHeight - *newh - *top, 0, 0, BORDER_CONSTANT, 0);
}
}
else
{
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
}
return dstimg;
}
void YOLO::normalize(Mat& img)
{
img.convertTo(img, CV_32F);
int i = 0, j = 0;
const float scale = 1.0 / 255.0;
for (i = 0; i < img.rows; i++)
{
float* pdata = (float*)(img.data + i * img.step);
for (j = 0; j < img.cols; j++)
{
pdata[0] = (pdata[0] * scale - this->mean[0]) / this->std[0];
pdata[1] = (pdata[1] * scale - this->mean[1]) / this->std[1];
pdata[2] = (pdata[2] * scale - this->mean[2]) / this->std[2];
pdata += 3;
}
}
}
void YOLO::drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) // Draw the predicted bounding box
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);
//Get the label for the class name and its confidence
string label = format("%.2f", conf);
label = this->classes[classId] + ":" + label;
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 1);
}
Mat YOLO::detect(Mat& srcimg)
{
int newh = 0, neww = 0, padh = 0, padw = 0;
Mat dstimg = this->resize_image(srcimg, &newh, &neww, &padh, &padw);
this->normalize(dstimg);
Mat blob = blobFromImage(dstimg);
this->net.setInput(blob);
vector<Mat> outs;
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
Mat outimg = srcimg.clone();
float ratioh = (float)newh / srcimg.rows;
float ratiow = (float)neww / srcimg.cols;
int i = 0, j = 0, area = this->inpHeight*this->inpWidth;
float* pdata_drive = (float*)outs[1].data; ///drive area segment
float* pdata_lane_line = (float*)outs[2].data; ///lane line segment
for (i = 0; i < outimg.rows; i++)
{
for (j = 0; j < outimg.cols; j++)
{
const int x = int(j*ratiow) + padw;
const int y = int(i*ratioh) + padh;
if (pdata_drive[y * this->inpWidth + x] < pdata_drive[area + y * this->inpWidth + x])
{
outimg.at<Vec3b>(i, j)[0] = 0;
outimg.at<Vec3b>(i, j)[1] = 255;
outimg.at<Vec3b>(i, j)[2] = 0;
}
if (pdata_lane_line[y * this->inpWidth + x] < pdata_lane_line[area + y * this->inpWidth + x])
{
outimg.at<Vec3b>(i, j)[0] = 255;
outimg.at<Vec3b>(i, j)[1] = 0;
outimg.at<Vec3b>(i, j)[2] = 0;
}
}
}
/////generate proposals
vector<int> classIds;
vector<float> confidences;
vector<Rect> boxes;
ratioh = (float)srcimg.rows / newh;
ratiow = (float)srcimg.cols / neww;
int n = 0, q = 0, nout = this->classes.size() + 5, row_ind = 0;
float* pdata = (float*)outs[0].data;
for (n = 0; n < 3; n++) ///�߶�
{
int num_grid_x = (int)(this->inpWidth / this->stride[n]);
int num_grid_y = (int)(this->inpHeight / this->stride[n]);
for (q = 0; q < 3; q++) ///anchor��
{
const float anchor_w = this->anchors[n][q * 2];
const float anchor_h = this->anchors[n][q * 2 + 1];
for (i = 0; i < num_grid_y; i++)
{
for (j = 0; j < num_grid_x; j++)
{
const float box_score = pdata[4];
if (box_score > this->objThreshold)
{
Mat scores = outs[0].row(row_ind).colRange(5, outs[0].cols);
Point classIdPoint;
double max_class_socre;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
if (max_class_socre > this->confThreshold)
{
float cx = (pdata[0] * 2.f - 0.5f + j) * this->stride[n]; ///cx
float cy = (pdata[1] * 2.f - 0.5f + i) * this->stride[n]; ///cy
float w = powf(pdata[2] * 2.f, 2.f) * anchor_w; ///w
float h = powf(pdata[3] * 2.f, 2.f) * anchor_h; ///h
int left = (cx - 0.5*w - padw)*ratiow;
int top = (cy - 0.5*h - padh)*ratioh;
classIds.push_back(classIdPoint.x);
confidences.push_back(max_class_socre * box_score);
boxes.push_back(Rect(left, top, (int)(w*ratiow), (int)(h*ratioh)));
}
}
row_ind++;
pdata += nout;
}
}
}
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector<int> indices;
NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
for (size_t i = 0; i < indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
this->drawPred(classIds[idx], confidences[idx], box.x, box.y,
box.x + box.width, box.y + box.height, outimg);
}
return outimg;
}
int main()
{
YOLO yolo_model("yolop.onnx", 0.25, 0.45, 0.5);
string imgpath = "images/0ace96c3-48481887.jpg";
Mat srcimg = imread(imgpath);
Mat outimg = yolo_model.detect(srcimg);
static const string kWinName = "Deep learning object detection in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, outimg);
waitKey(0);
destroyAllWindows();
}