-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
80 lines (65 loc) · 2.55 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# encoding=utf8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
class CNN_MNIST_OriginNet(nn.Layer):
name = "MNIST-ORIGIN-NET"
def __init__(self):
super().__init__()
nn.initializer.set_global_initializer(nn.initializer.KaimingNormal(), nn.initializer.KaimingUniform())
self.cnn = nn.Sequential(
nn.Conv2D(1, 32, 5, padding=2, stride=1),
nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2), # 28 -> 14
nn.Conv2D(32, 64, 5, padding=2, stride=1),
nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2), # 14 -> 7
)
self.lin = nn.Sequential(
nn.Linear(64*7*7, 1024),
nn.ReLU(),
nn.Linear(1024, 10)
)
def forward(self, x):
x = self.cnn(x)
x = x.reshape([-1, 64*7*7])
x = self.lin(x)
return x
class CNN_MNIST_B(nn.Layer):
name = "MNIST-B-NET"
def __init__(self):
super().__init__()
nn.initializer.set_global_initializer(nn.initializer.KaimingNormal(), nn.initializer.KaimingUniform())
self.cnn = nn.Sequential(
nn.Dropout(p=0.2),
# nn.Conv2D(1, 64, 8, padding='same', stride=1),
nn.Conv2D(1, 64, 8, stride=1),
nn.ReLU(),
# nn.MaxPool2D(kernel_size=2, stride=2), # 28 -> 14
# nn.Conv2D(64, 128, 6, padding='same', stride=1),
nn.Conv2D(64, 128, 6, stride=1),
nn.ReLU(),
# nn.MaxPool2D(kernel_size=2, stride=2), # 14 -> 7
# nn.Conv2D(128, 128, 5, padding='same', stride=1),
nn.Conv2D(128, 128, 5, stride=1),
nn.ReLU(),
nn.Dropout(p=0.5),
)
self.lin = nn.Sequential(
# nn.Linear(7*7*128, 10)
nn.Linear(12 * 12 * 128, 10)
)
def forward(self, x):
x = self.cnn(x)
# x = x.reshape([-1, 7*7*128])
x = x.reshape([-1, 12 * 12 * 128])
x = self.lin(x)
return x