-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
301 lines (258 loc) · 12.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import argparse
import logging
import os
import random
import shutil
import sys
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tensorboardX import SummaryWriter
from torch.nn import BCEWithLogitsLoss
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import make_grid
from tqdm import tqdm
from dataloaders import utils
from dataloaders.dataset import (BaseDataSets, RandomGenerator,
TwoStreamBatchSampler)
from networks.net_factory import net_factory
from utils import losses, metrics, ramps
from test import test_single_volume
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='../data/ACDC', help='Name of Experiment')
parser.add_argument('--exp', type=str,
default='ACDC/Interpolation_Consistency_Training', help='experiment_name')
parser.add_argument('--model', type=str,
default='unet', help='model_name')
parser.add_argument('--max_iterations', type=int,
default=30000, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=24,
help='batch_size per gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01,
help='segmentation network learning rate')
parser.add_argument('--patch_size', type=list, default=[256, 256],
help='patch size of network input')
parser.add_argument('--seed', type=int, default=1337, help='random seed')
parser.add_argument('--num_classes', type=int, default=4,
help='output channel of network')
# label and unlabel
parser.add_argument('--labeled_bs', type=int, default=12,
help='labeled_batch_size per gpu')
parser.add_argument('--labeled_num', type=int, default=300,
help='labeled data')
parser.add_argument('--ict_alpha', type=int, default=0.2,
help='ict_alpha')
# costs
parser.add_argument('--ema_decay', type=float, default=0.99, help='ema_decay')
parser.add_argument('--consistency_type', type=str,
default="mse", help='consistency_type')
parser.add_argument('--consistency', type=float,
default=0.1, help='consistency')
parser.add_argument('--consistency_rampup', type=float,
default=200.0, help='consistency_rampup')
args = parser.parse_args()
def patients_to_slices(dataset, patiens_num):
ref_dict = None
if "ACDC" in dataset:
ref_dict = {"3": 68, "7": 136,
"14": 256, "21": 396, "28": 512, "35": 664, "140": 824, "300": 1024}
elif "Prostate":
ref_dict = {"2": 27, "4": 53, "8": 120,
"12": 179, "16": 256, "21": 312, "42": 623}
else:
print("Error")
return ref_dict[str(patiens_num)]
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_rampup)
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def train(args, snapshot_path):
base_lr = args.base_lr
num_classes = args.num_classes
batch_size = args.batch_size
max_iterations = args.max_iterations
def create_model(ema=False):
# Network definition
model = net_factory(net_type=args.model, in_chns=1,
class_num=num_classes)
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
ema_model = create_model(ema=True)
def worker_init_fn(worker_id):
random.seed(args.seed + worker_id)
db_train = BaseDataSets(base_dir=args.root_path, split="train", num=None, transform=transforms.Compose([
RandomGenerator(args.patch_size)
]))
db_val = BaseDataSets(base_dir=args.root_path, split="val")
total_slices = len(db_train)
labeled_slice = patients_to_slices(args.root_path, args.labeled_num)
print("Total silices is: {}, labeled slices is: {}".format(
total_slices, labeled_slice))
labeled_idxs = list(range(0, labeled_slice))
unlabeled_idxs = list(range(labeled_slice, total_slices))
batch_sampler = TwoStreamBatchSampler(
labeled_idxs, unlabeled_idxs, batch_size, batch_size-args.labeled_bs)
trainloader = DataLoader(db_train, batch_sampler=batch_sampler,
num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn)
model.train()
valloader = DataLoader(db_val, batch_size=1, shuffle=False,
num_workers=1)
optimizer = optim.SGD(model.parameters(), lr=base_lr,
momentum=0.9, weight_decay=0.0001)
ce_loss = CrossEntropyLoss()
dice_loss = losses.DiceLoss(num_classes)
writer = SummaryWriter(snapshot_path + '/log')
logging.info("{} iterations per epoch".format(len(trainloader)))
iter_num = 0
max_epoch = max_iterations // len(trainloader) + 1
best_performance = 0.0
iterator = tqdm(range(max_epoch), ncols=70)
for epoch_num in iterator:
for i_batch, sampled_batch in enumerate(trainloader):
volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
unlabeled_volume_batch = volume_batch[args.labeled_bs:]
labeled_volume_batch = volume_batch[:args.labeled_bs]
# ICT mix factors
ict_mix_factors = np.random.beta(
args.ict_alpha, args.ict_alpha, size=(args.labeled_bs//2, 1, 1, 1))
ict_mix_factors = torch.tensor(
ict_mix_factors, dtype=torch.float).cuda()
unlabeled_volume_batch_0 = unlabeled_volume_batch[0:args.labeled_bs//2, ...]
unlabeled_volume_batch_1 = unlabeled_volume_batch[args.labeled_bs//2:, ...]
# Mix images
batch_ux_mixed = unlabeled_volume_batch_0 * \
(1.0 - ict_mix_factors) + \
unlabeled_volume_batch_1 * ict_mix_factors
input_volume_batch = torch.cat(
[labeled_volume_batch, batch_ux_mixed], dim=0)
outputs = model(input_volume_batch)
outputs_soft = torch.softmax(outputs, dim=1)
with torch.no_grad():
ema_output_ux0 = torch.softmax(
ema_model(unlabeled_volume_batch_0), dim=1)
ema_output_ux1 = torch.softmax(
ema_model(unlabeled_volume_batch_1), dim=1)
batch_pred_mixed = ema_output_ux0 * \
(1.0 - ict_mix_factors) + ema_output_ux1 * ict_mix_factors
loss_ce = ce_loss(outputs[:args.labeled_bs],
label_batch[:args.labeled_bs][:].long())
loss_dice = dice_loss(
outputs_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1))
supervised_loss = 0.5 * (loss_dice + loss_ce)
consistency_weight = get_current_consistency_weight(iter_num//150)
consistency_loss = torch.mean(
(outputs_soft[args.labeled_bs:] - batch_pred_mixed) ** 2)
loss = supervised_loss + consistency_weight * consistency_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
update_ema_variables(model, ema_model, args.ema_decay, iter_num)
lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
iter_num = iter_num + 1
writer.add_scalar('info/lr', lr_, iter_num)
writer.add_scalar('info/total_loss', loss, iter_num)
writer.add_scalar('info/loss_ce', loss_ce, iter_num)
writer.add_scalar('info/loss_dice', loss_dice, iter_num)
writer.add_scalar('info/consistency_loss',
consistency_loss, iter_num)
writer.add_scalar('info/consistency_weight',
consistency_weight, iter_num)
logging.info(
'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' %
(iter_num, loss.item(), loss_ce.item(), loss_dice.item()))
if iter_num % 20 == 0:
image = volume_batch[1, 0:1, :, :]
writer.add_image('train/Image', image, iter_num)
outputs = torch.argmax(torch.softmax(
outputs, dim=1), dim=1, keepdim=True)
writer.add_image('train/Prediction',
outputs[1, ...] * 50, iter_num)
image = batch_ux_mixed[1, 0:1, :, :]
writer.add_image('train/Mixed_Unlabeled',
image, iter_num)
labs = label_batch[1, ...].unsqueeze(0) * 50
writer.add_image('train/GroundTruth', labs, iter_num)
if iter_num > 0 and iter_num % 200 == 0:
model.eval()
metric_list = 0.0
for i_batch, sampled_batch in enumerate(valloader):
metric_i = test_single_volume(
sampled_batch["image"], sampled_batch["label"], model, classes=num_classes)
metric_list += np.array(metric_i)
metric_list = metric_list / len(db_val)
for class_i in range(num_classes-1):
writer.add_scalar('info/val_{}_dice'.format(class_i+1),
metric_list[class_i, 0], iter_num)
writer.add_scalar('info/val_{}_hd95'.format(class_i+1),
metric_list[class_i, 1], iter_num)
performance = np.mean(metric_list, axis=0)[0]
mean_hd95 = np.mean(metric_list, axis=0)[1]
writer.add_scalar('info/val_mean_dice', performance, iter_num)
writer.add_scalar('info/val_mean_hd95', mean_hd95, iter_num)
if performance > best_performance:
best_performance = performance
save_mode_path = os.path.join(snapshot_path,
'iter_{}_dice_{}.pth'.format(
iter_num, round(best_performance, 4)))
save_best = os.path.join(snapshot_path,
'{}_best_model.pth'.format(args.model))
torch.save(model.state_dict(), save_mode_path)
torch.save(model.state_dict(), save_best)
logging.info(
'iteration %d : mean_dice : %f mean_hd95 : %f' % (iter_num, performance, mean_hd95))
model.train()
if iter_num % 3000 == 0:
save_mode_path = os.path.join(
snapshot_path, 'iter_' + str(iter_num) + '.pth')
torch.save(model.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
if iter_num >= max_iterations:
break
if iter_num >= max_iterations:
iterator.close()
break
writer.close()
return "Training Finished!"
if __name__ == "__main__":
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
snapshot_path = "../model/{}_{}_labeled/{}".format(
args.exp, args.labeled_num, args.model)
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
if os.path.exists(snapshot_path + '/code'):
shutil.rmtree(snapshot_path + '/code')
shutil.copytree('.', snapshot_path + '/code',
shutil.ignore_patterns(['.git', '__pycache__']))
logging.basicConfig(filename=snapshot_path+"/log.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
train(args, snapshot_path)