forked from davisking/dlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnn_yolo_train_ex.cpp
536 lines (494 loc) · 24.7 KB
/
dnn_yolo_train_ex.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the deep learning tools from the dlib C++
Library. I'm assuming you have already read the dnn_introduction_ex.cpp, the
dnn_introduction2_ex.cpp and the dnn_introduction3_ex.cpp examples. In this example
program we are going to show how one can train a YOLO detector. In particular, we will train
the YOLOv3 model like the one introduced in this paper:
"YOLOv3: An Incremental Improvement" by Joseph Redmon and Ali Farhadi.
This example program will work with any imglab dataset, such as:
- faces: http://dlib.net/files/data/dlib_face_detection_dataset-2016-09-30.tar.gz
- vehicles: http://dlib.net/files/data/dlib_rear_end_vehicles_v1.tar
Just uncompress the dataset and give the directory containing the training.xml and testing.xml
files as an argument to this program.
*/
#include <dlib/cmd_line_parser.h>
#include <dlib/data_io.h>
#include <dlib/dnn.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <tools/imglab/src/metadata_editor.h>
using namespace std;
using namespace dlib;
// In the darknet namespace we define:
// - the network architecture: DarkNet53 backbone and detection head for YOLO.
// - a helper function to setup the detector: change the number of classes, etc.
namespace darknet
{
// backbone tags
template <typename SUBNET> using btag8 = add_tag_layer<8008, SUBNET>;
template <typename SUBNET> using btag16 = add_tag_layer<8016, SUBNET>;
template <typename SUBNET> using bskip8 = add_skip_layer<btag8, SUBNET>;
template <typename SUBNET> using bskip16 = add_skip_layer<btag16, SUBNET>;
// neck tags
template <typename SUBNET> using ntag8 = add_tag_layer<6008, SUBNET>;
template <typename SUBNET> using ntag16 = add_tag_layer<6016, SUBNET>;
template <typename SUBNET> using ntag32 = add_tag_layer<6032, SUBNET>;
template <typename SUBNET> using nskip8 = add_skip_layer<ntag8, SUBNET>;
template <typename SUBNET> using nskip16 = add_skip_layer<ntag16, SUBNET>;
template <typename SUBNET> using nskip32 = add_skip_layer<ntag32, SUBNET>;
// head tags
template <typename SUBNET> using htag8 = add_tag_layer<7008, SUBNET>;
template <typename SUBNET> using htag16 = add_tag_layer<7016, SUBNET>;
template <typename SUBNET> using htag32 = add_tag_layer<7032, SUBNET>;
template <typename SUBNET> using hskip8 = add_skip_layer<htag8, SUBNET>;
template <typename SUBNET> using hskip16 = add_skip_layer<htag16, SUBNET>;
// yolo tags
template <typename SUBNET> using ytag8 = add_tag_layer<4008, SUBNET>;
template <typename SUBNET> using ytag16 = add_tag_layer<4016, SUBNET>;
template <typename SUBNET> using ytag32 = add_tag_layer<4032, SUBNET>;
template <template <typename> class ACT, template <typename> class BN>
struct def
{
template <long nf, long ks, int s, typename SUBNET>
using conblock = ACT<BN<add_layer<con_<nf, ks, ks, s, s, ks / 2, ks / 2>, SUBNET>>>;
template <long nf, typename SUBNET>
using residual = add_prev1<conblock<nf, 3, 1, conblock<nf / 2, 1, 1, tag1<SUBNET>>>>;
template <long nf, long factor, typename SUBNET>
using conblock5 = conblock<nf, 1, 1,
conblock<nf * factor, 3, 1,
conblock<nf, 1, 1,
conblock<nf * factor, 3, 1,
conblock<nf, 1, 1, SUBNET>>>>>;
template <typename SUBNET> using res_64 = residual<64, SUBNET>;
template <typename SUBNET> using res_128 = residual<128, SUBNET>;
template <typename SUBNET> using res_256 = residual<256, SUBNET>;
template <typename SUBNET> using res_512 = residual<512, SUBNET>;
template <typename SUBNET> using res_1024 = residual<1024, SUBNET>;
template <typename INPUT>
using backbone53 = repeat<4, res_1024, conblock<1024, 3, 2,
btag16<repeat<8, res_512, conblock<512, 3, 2,
btag8<repeat<8, res_256, conblock<256, 3, 2,
repeat<2, res_128, conblock<128, 3, 2,
res_64< conblock<64, 3, 2,
conblock<32, 3, 1,
INPUT>>>>>>>>>>>>>;
// This is the layer that will be passed to the loss layer to get the detections from the network.
// The main thing to pay attention to when defining the YOLO output layer is that it should be
// a tag layer, followed by a sigmoid layer and a 1x1 convolution. The tag layer should be unique
// in the whole network definition, as the loss layer will use it to get the outputs. The number of
// filters in the convolutional layer should be (1 + 4 + num_classes) * num_anchors at that output.
// The 1 corresponds to the objectness in the loss layer and the 4 to the bounding box coordinates.
template <long num_classes, long nf, template <typename> class YTAG, template <typename> class NTAG, typename SUBNET>
using yolo = YTAG<sig<con<3 * (num_classes + 5), 1, 1, 1, 1,
conblock<nf, 3, 1,
NTAG<conblock5<nf / 2, 2,
SUBNET>>>>>>;
template <long num_classes>
using yolov3 = yolo<num_classes, 256, ytag8, ntag8,
concat2<htag8, btag8,
htag8<upsample<2, conblock<128, 1, 1,
nskip16<
yolo<num_classes, 512, ytag16, ntag16,
concat2<htag16, btag16,
htag16<upsample<2, conblock<256, 1, 1,
nskip32<
yolo<num_classes, 1024, ytag32, ntag32,
backbone53<input_rgb_image>>>>>>>>>>>>>>;
};
using yolov3_train_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, bn_con>::yolov3<80>>;
using yolov3_infer_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, affine>::yolov3<80>>;
void setup_detector(yolov3_train_type& net, const yolo_options& options)
{
// remove bias from bn inputs
disable_duplicative_biases(net);
// setup leaky relus
visit_computational_layers(net, [](leaky_relu_& l) { l = leaky_relu_(0.1); });
// enlarge the batch normalization stats window
set_all_bn_running_stats_window_sizes(net, 1000);
// set the number of filters for detection layers (they are located after the tag and sig layers)
const long nfo1 = options.anchors.at(tag_id<ytag8>::id).size() * (options.labels.size() + 5);
const long nfo2 = options.anchors.at(tag_id<ytag16>::id).size() * (options.labels.size() + 5);
const long nfo3 = options.anchors.at(tag_id<ytag32>::id).size() * (options.labels.size() + 5);
layer<ytag8, 2>(net).layer_details().set_num_filters(nfo1);
layer<ytag16, 2>(net).layer_details().set_num_filters(nfo2);
layer<ytag32, 2>(net).layer_details().set_num_filters(nfo3);
}
}
// In this example, YOLO expects square images, and we choose to transform them by letterboxing them.
rectangle_transform preprocess_image(const matrix<rgb_pixel>& image, matrix<rgb_pixel>& output)
{
return rectangle_transform(inv(letterbox_image(image, output)));
}
// YOLO outputs the bounding boxes in the coordinate system of the input (letterboxed) image, so we need to convert them
// back to the original image.
void postprocess_detections(const rectangle_transform& tform, std::vector<yolo_rect>& detections)
{
for (auto& d : detections)
d.rect = tform(d.rect);
}
int main(const int argc, const char** argv)
try
{
command_line_parser parser;
parser.add_option("size", "image size for training (default: 416)", 1);
parser.add_option("learning-rate", "initial learning rate (default: 0.001)", 1);
parser.add_option("batch-size", "mini batch size (default: 8)", 1);
parser.add_option("burnin", "learning rate burnin steps (default: 1000)", 1);
parser.add_option("patience", "number of steps without progress (default: 10000)", 1);
parser.add_option("workers", "number of worker threads to load data (default: 4)", 1);
parser.add_option("gpus", "number of GPUs to run the training on (default: 1)", 1);
parser.add_option("test", "test the detector with a threshold (default: 0.01)", 1);
parser.add_option("visualize", "visualize data augmentation instead of training");
parser.add_option("map", "compute the mean average precision");
parser.add_option("anchors", "Do nothing but compute <arg1> anchor boxes using K-Means and print their shapes.", 1);
parser.set_group_name("Help Options");
parser.add_option("h", "alias of --help");
parser.add_option("help", "display this message and exit");
parser.parse(argc, argv);
if (parser.number_of_arguments() == 0 || parser.option("h") || parser.option("help"))
{
parser.print_options();
cout << "Give the path to a folder containing the training.xml file." << endl;
return 0;
}
const double learning_rate = get_option(parser, "learning-rate", 0.001);
const size_t patience = get_option(parser, "patience", 10000);
const size_t batch_size = get_option(parser, "batch-size", 8);
const size_t burnin = get_option(parser, "burnin", 1000);
const size_t image_size = get_option(parser, "size", 416);
const size_t num_workers = get_option(parser, "workers", 4);
const size_t num_gpus = get_option(parser, "gpus", 1);
const string data_directory = parser[0];
const string sync_file_name = "yolov3_sync";
image_dataset_metadata::dataset dataset;
image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/training.xml");
cout << "# images: " << dataset.images.size() << endl;
std::map<string, size_t> labels;
size_t num_objects = 0;
for (const auto& im : dataset.images)
{
for (const auto& b : im.boxes)
{
labels[b.label]++;
++num_objects;
}
}
cout << "# labels: " << labels.size() << endl;
yolo_options options;
color_mapper string_to_color;
for (const auto& label : labels)
{
cout << " - " << label.first << ": " << label.second;
cout << " (" << (100.0*label.second)/num_objects << "%)\n";
options.labels.push_back(label.first);
string_to_color(label.first);
}
// If the default anchor boxes don't fit your data well you should recompute them.
// Here's a simple way to do it using K-Means clustering. Note that the approach
// shown below is suboptimal, since it doesn't group the bounding boxes by size.
// Grouping the bounding boxes by size and computing the K-Means on each group
// would make more sense, since each stride of the network is meant to output
// boxes at a particular size, but that is very specific to the network architecture
// and the dataset itself.
if (parser.option("anchors"))
{
const auto num_clusers = std::stoul(parser.option("anchors").argument());
std::vector<dpoint> samples;
// First we need to rescale the bounding boxes to match the image size at training time.
for (const auto& image_info : dataset.images)
{
const auto scale = image_size / std::max<double>(image_info.width, image_info.height);
for (const auto& box : image_info.boxes)
{
dpoint sample(box.rect.width(), box.rect.height());
samples.push_back(sample*scale);
}
}
// Now we can compute K-Means clustering
randomize_samples(samples);
cout << "Computing anchors for " << samples.size() << " samples" << endl;
std::vector<dpoint> anchors;
pick_initial_centers(num_clusers, anchors, samples);
find_clusters_using_kmeans(samples, anchors);
std::sort(anchors.begin(), anchors.end(), [](const dpoint& a, const dpoint& b){ return prod(a) < prod(b); });
for (const dpoint& c : anchors)
cout << round(c(0)) << 'x' << round(c(1)) << endl;
// And check the average IoU of the newly computed anchor boxes and the training samples.
double average_iou = 0;
for (const dpoint& s : samples)
{
drectangle sample = centered_drect(dpoint(0, 0), s.x(), s.y());
double best_iou = 0;
for (const dpoint& a : anchors)
{
drectangle anchor = centered_drect(dpoint(0, 0), a.x(), a.y());
best_iou = std::max(best_iou, box_intersection_over_union(sample, anchor));
}
average_iou += best_iou;
}
cout << "Average IoU: " << average_iou / samples.size() << endl;
return EXIT_SUCCESS;
}
// When computing the objectness loss in YOLO, predictions that do not have an IoU
// with any ground truth box of at least options.iou_ignore_threshold, will be
// treated as not capable of detecting an object, an therefore incur loss.
// Similarly, predictions above this threshold are considered correct predictions
// by the loss. Typical settings for this threshold are in the range 0.5 to 0.7.
options.iou_ignore_threshold = 0.7;
// By setting this to a value < 1, we are telling the model to update all the predictions
// as long as the anchor box has an IoU > 0.2 with a ground truth.
options.iou_anchor_threshold = 0.2;
// These are the anchors computed on COCO dataset, presented in the YOLOv3 paper.
options.add_anchors<darknet::ytag8>({{10, 13}, {16, 30}, {33, 23}});
options.add_anchors<darknet::ytag16>({{30, 61}, {62, 45}, {59, 119}});
options.add_anchors<darknet::ytag32>({{116, 90}, {156, 198}, {373, 326}});
darknet::yolov3_train_type net(options);
darknet::setup_detector(net, options);
// The training process can be unstable at the beginning. For this reason, we exponentially
// increase the learning rate during the first burnin steps.
const matrix<double> learning_rate_schedule = learning_rate * pow(linspace(1e-12, 1, burnin), 4);
// In case we have several GPUs, we can tell the dnn_trainer to make use of them.
std::vector<int> gpus(num_gpus);
iota(gpus.begin(), gpus.end(), 0);
// We initialize the trainer here, as it will be used in several contexts, depending on the
// arguments passed the the program.
dnn_trainer<darknet::yolov3_train_type> trainer(net, sgd(0.0005, 0.9), gpus);
trainer.be_verbose();
trainer.set_mini_batch_size(batch_size);
trainer.set_learning_rate_schedule(learning_rate_schedule);
trainer.set_synchronization_file(sync_file_name, chrono::minutes(15));
cout << trainer;
// If the training has started and a synchronization file has already been saved to disk,
// we can re-run this program with the --test option and a confidence threshold to see
// how the training is going.
if (parser.option("test"))
{
if (!file_exists(sync_file_name))
{
cout << "Could not find file " << sync_file_name << endl;
return EXIT_FAILURE;
}
const double threshold = get_option(parser, "test", 0.01);
image_window win;
matrix<rgb_pixel> image, resized(image_size, image_size);
for (const auto& im : dataset.images)
{
win.clear_overlay();
load_image(image, data_directory + "/" + im.filename);
win.set_title(im.filename);
win.set_image(image);
const auto tform = preprocess_image(image, resized);
auto detections = net.process(resized, threshold);
postprocess_detections(tform, detections);
cout << "# detections: " << detections.size() << endl;
for (const auto& det : detections)
{
win.add_overlay(det.rect, string_to_color(det.label), det.label);
cout << det.label << ": " << det.rect << " " << det.detection_confidence << endl;
}
cin.get();
}
return EXIT_SUCCESS;
}
// If the training has started and a synchronization file has already been saved to disk,
// we can re-run this program with the --map option to compute the mean average precision
// on the test set.
if (parser.option("map"))
{
image_dataset_metadata::dataset dataset;
image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/testing.xml");
if (!file_exists(sync_file_name))
{
cout << "Could not find file " << sync_file_name << endl;
return EXIT_FAILURE;
}
matrix<rgb_pixel> image, resized(image_size, image_size);
std::map<std::string, std::vector<std::pair<double, bool>>> hits;
std::map<std::string, unsigned long> missing;
for (const auto& label : options.labels)
{
hits[label] = std::vector<std::pair<double, bool>>();
missing[label] = 0;
}
cout << "computing mean average precision for " << dataset.images.size() << " images..." << endl;
for (size_t i = 0; i < dataset.images.size(); ++i)
{
const auto& im = dataset.images[i];
load_image(image, data_directory + "/" + im.filename);
const auto tform = preprocess_image(image, resized);
auto dets = net.process(resized, 0.005);
postprocess_detections(tform, dets);
std::vector<bool> used(dets.size(), false);
// true positives: truths matched by detections
for (size_t t = 0; t < im.boxes.size(); ++t)
{
bool found_match = false;
for (size_t d = 0; d < dets.size(); ++d)
{
if (used[d])
continue;
if (im.boxes[t].label == dets[d].label &&
box_intersection_over_union(drectangle(im.boxes[t].rect), dets[d].rect) > 0.5)
{
used[d] = true;
found_match = true;
hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, true);
break;
}
}
// false negatives: truths not matched
if (!found_match)
missing.at(im.boxes[t].label)++;
}
// false positives: detections not matched
for (size_t d = 0; d < dets.size(); ++d)
{
if (!used[d])
hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, false);
}
cout << "progress: " << i << '/' << dataset.images.size() << "\t\t\t\r" << flush;
}
double map = 0;
for (auto& item : hits)
{
std::sort(item.second.rbegin(), item.second.rend());
const double ap = average_precision(item.second, missing[item.first]);
cout << rpad(item.first + ": ", 16, " ") << ap * 100 << '%' << endl;
map += ap;
}
cout << rpad(string("mAP: "), 16, " ") << map / hits.size() * 100 << '%' << endl;
return EXIT_SUCCESS;
}
// Create some data loaders which will load the data, and perform some data augmentation.
dlib::pipe<std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>>> train_data(1000);
const auto loader = [&dataset, &data_directory, &train_data, &image_size](time_t seed)
{
dlib::rand rnd(time(nullptr) + seed);
matrix<rgb_pixel> image, rotated;
std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
random_cropper cropper;
cropper.set_seed(time(nullptr) + seed);
cropper.set_chip_dims(image_size, image_size);
cropper.set_max_object_size(0.9);
cropper.set_min_object_size(10, 10);
cropper.set_max_rotation_degrees(10);
cropper.set_translate_amount(0.5);
cropper.set_randomly_flip(true);
cropper.set_background_crops_fraction(0);
cropper.set_min_object_coverage(0.8);
while (train_data.is_enabled())
{
const auto idx = rnd.get_random_32bit_number() % dataset.images.size();
load_image(image, data_directory + "/" + dataset.images[idx].filename);
for (const auto& box : dataset.images[idx].boxes)
temp.second.emplace_back(box.rect, 1, box.label);
// We alternate between augmenting the full image and random cropping
if (rnd.get_random_double() > 0.5)
{
rectangle_transform tform = rotate_image(
image,
rotated,
rnd.get_double_in_range(-5 * pi / 180, 5 * pi / 180),
interpolate_bilinear());
for (auto& box : temp.second)
box.rect = tform(box.rect);
temp.first.set_size(image_size, image_size);
tform = letterbox_image(rotated, temp.first);
for (auto& box : temp.second)
box.rect = tform(box.rect);
if (rnd.get_random_double() > 0.5)
{
tform = flip_image_left_right(temp.first);
for (auto& box : temp.second)
box.rect = tform(box.rect);
}
}
else
{
std::vector<yolo_rect> boxes = temp.second;
cropper(image, boxes, temp.first, temp.second);
}
disturb_colors(temp.first, rnd);
train_data.enqueue(temp);
}
};
std::vector<thread> data_loaders;
for (size_t i = 0; i < num_workers; ++i)
data_loaders.emplace_back([loader, i]() { loader(i + 1); });
// It is always a good idea to visualize the training samples. By passing the --visualize
// flag, we can see the training samples that will be fed to the dnn_trainer.
if (parser.option("visualize"))
{
image_window win;
while (true)
{
std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
train_data.dequeue(temp);
win.clear_overlay();
win.set_image(temp.first);
for (const auto& r : temp.second)
{
auto color = string_to_color(r.label);
// make semi-transparent and cross-out the ignored boxes
if (r.ignore)
{
color.alpha = 128;
win.add_overlay(r.rect.tl_corner(), r.rect.br_corner(), color);
win.add_overlay(r.rect.tr_corner(), r.rect.bl_corner(), color);
}
win.add_overlay(r.rect, color, r.label);
}
cout << "Press enter to visualize the next training sample.";
cin.get();
}
}
std::vector<matrix<rgb_pixel>> images;
std::vector<std::vector<yolo_rect>> bboxes;
// The main training loop, that we will reuse for the warmup and the rest of the training.
const auto train = [&images, &bboxes, &train_data, &trainer]()
{
images.clear();
bboxes.clear();
pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
while (images.size() < trainer.get_mini_batch_size())
{
train_data.dequeue(temp);
images.push_back(move(temp.first));
bboxes.push_back(move(temp.second));
}
trainer.train_one_step(images, bboxes);
};
cout << "training started with " << burnin << " burn-in steps" << endl;
while (trainer.get_train_one_step_calls() < burnin)
train();
cout << "burn-in finished" << endl;
trainer.get_net();
trainer.set_learning_rate(learning_rate);
trainer.set_min_learning_rate(learning_rate * 1e-3);
trainer.set_learning_rate_shrink_factor(0.1);
trainer.set_iterations_without_progress_threshold(patience);
cout << trainer << endl;
while (trainer.get_learning_rate() >= trainer.get_min_learning_rate())
train();
cout << "training done" << endl;
trainer.get_net();
train_data.disable();
for (auto& worker : data_loaders)
worker.join();
// Before saving the network, we can assign it to the "infer" version, so that it won't
// perform batch normalization with batch sizes larger than one, as usual. Moreover,
// we can also fuse the batch normalization (affine) layers into the convolutional
// layers, so that the network can run a bit faster. Notice that, after fusing the
// layers, the network can no longer be used for training, so you should save the
// yolov3_train_type network if you plan to further train or finetune the network.
darknet::yolov3_infer_type inet(net);
fuse_layers(inet);
serialize("yolov3.dnn") << inet;
return EXIT_SUCCESS;
}
catch (const std::exception& e)
{
cout << e.what() << endl;
return EXIT_FAILURE;
}