-
Notifications
You must be signed in to change notification settings - Fork 0
/
DetectPlates.py
222 lines (145 loc) · 9.92 KB
/
DetectPlates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# DetectPlates.py
import cv2
import numpy as np
import math
import Main
import random
import Preprocess
import DetectChars
import PossiblePlate
import PossibleChar
# module level variables ##########################################################################
PLATE_WIDTH_PADDING_FACTOR = 1.3
PLATE_HEIGHT_PADDING_FACTOR = 1.5
###################################################################################################
def detectPlatesInScene(imgOriginalScene):
listOfPossiblePlates = [] # this will be the return value
height, width, numChannels = imgOriginalScene.shape
imgGrayscaleScene = np.zeros((height, width, 1), np.uint8)
imgThreshScene = np.zeros((height, width, 1), np.uint8)
imgContours = np.zeros((height, width, 3), np.uint8)
cv2.destroyAllWindows()
if Main.showSteps == True: # show steps #######################################################
cv2.imshow("0", imgOriginalScene)
# end if # show steps #########################################################################
imgGrayscaleScene, imgThreshScene = Preprocess.preprocess(imgOriginalScene) # preprocess to get grayscale and threshold images
if Main.showSteps == True: # show steps #######################################################
cv2.imshow("1a", imgGrayscaleScene)
cv2.imshow("1b", imgThreshScene)
# end if # show steps #########################################################################
# find all possible chars in the scene,
# this function first finds all contours, then only includes contours that could be chars (without comparison to other chars yet)
listOfPossibleCharsInScene = findPossibleCharsInScene(imgThreshScene)
if Main.showSteps == True: # show steps #######################################################
print("step 2 - len(listOfPossibleCharsInScene) = " + str(
len(listOfPossibleCharsInScene))) # 131 with MCLRNF1 image
imgContours = np.zeros((height, width, 3), np.uint8)
contours = []
for possibleChar in listOfPossibleCharsInScene:
contours.append(possibleChar.contour)
# end for
cv2.drawContours(imgContours, contours, -1, Main.SCALAR_WHITE)
cv2.imshow("2b", imgContours)
# end if # show steps #########################################################################
# given a list of all possible chars, find groups of matching chars
# in the next steps each group of matching chars will attempt to be recognized as a plate
listOfListsOfMatchingCharsInScene = DetectChars.findListOfListsOfMatchingChars(listOfPossibleCharsInScene)
if Main.showSteps == True: # show steps #######################################################
print("step 3 - listOfListsOfMatchingCharsInScene.Count = " + str(
len(listOfListsOfMatchingCharsInScene))) # 13 with MCLRNF1 image
imgContours = np.zeros((height, width, 3), np.uint8)
for listOfMatchingChars in listOfListsOfMatchingCharsInScene:
intRandomBlue = random.randint(0, 255)
intRandomGreen = random.randint(0, 255)
intRandomRed = random.randint(0, 255)
contours = []
for matchingChar in listOfMatchingChars:
contours.append(matchingChar.contour)
# end for
cv2.drawContours(imgContours, contours, -1, (intRandomBlue, intRandomGreen, intRandomRed))
# end for
cv2.imshow("3", imgContours)
# end if # show steps #########################################################################
for listOfMatchingChars in listOfListsOfMatchingCharsInScene: # for each group of matching chars
possiblePlate = extractPlate(imgOriginalScene, listOfMatchingChars) # attempt to extract plate
if possiblePlate.imgPlate is not None: # if plate was found
listOfPossiblePlates.append(possiblePlate) # add to list of possible plates
# end if
# end for
print("\n" + str(len(listOfPossiblePlates)) + " possible plates found") # 13 with MCLRNF1 image
if Main.showSteps == True: # show steps #######################################################
print("\n")
cv2.imshow("4a", imgContours)
for i in range(0, len(listOfPossiblePlates)):
p2fRectPoints = cv2.boxPoints(listOfPossiblePlates[i].rrLocationOfPlateInScene)
cv2.line(imgContours, tuple(p2fRectPoints[0]), tuple(p2fRectPoints[1]), Main.SCALAR_RED, 2)
cv2.line(imgContours, tuple(p2fRectPoints[1]), tuple(p2fRectPoints[2]), Main.SCALAR_RED, 2)
cv2.line(imgContours, tuple(p2fRectPoints[2]), tuple(p2fRectPoints[3]), Main.SCALAR_RED, 2)
cv2.line(imgContours, tuple(p2fRectPoints[3]), tuple(p2fRectPoints[0]), Main.SCALAR_RED, 2)
cv2.imshow("4a", imgContours)
print("possible plate " + str(i) + ", click on any image and press a key to continue . . .")
cv2.imshow("4b", listOfPossiblePlates[i].imgPlate)
cv2.waitKey(0)
# end for
print("\nplate detection complete, click on any image and press a key to begin char recognition . . .\n")
cv2.waitKey(0)
# end if # show steps #########################################################################
return listOfPossiblePlates
# end function
###################################################################################################
def findPossibleCharsInScene(imgThresh):
listOfPossibleChars = [] # this will be the return value
intCountOfPossibleChars = 0
imgThreshCopy = imgThresh.copy()
imgContours, contours, npaHierarchy = cv2.findContours(imgThreshCopy, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # find all contours
height, width = imgThresh.shape
imgContours = np.zeros((height, width, 3), np.uint8)
for i in range(0, len(contours)): # for each contour
if Main.showSteps == True: # show steps ###################################################
cv2.drawContours(imgContours, contours, i, Main.SCALAR_WHITE)
# end if # show steps #####################################################################
possibleChar = PossibleChar.PossibleChar(contours[i])
if DetectChars.checkIfPossibleChar(possibleChar): # if contour is a possible char, note this does not compare to other chars (yet) . . .
intCountOfPossibleChars = intCountOfPossibleChars + 1 # increment count of possible chars
listOfPossibleChars.append(possibleChar) # and add to list of possible chars
# end if
# end for
if Main.showSteps == True: # show steps #######################################################
print("\nstep 2 - len(contours) = " + str(len(contours))) # 2362 with MCLRNF1 image
print("step 2 - intCountOfPossibleChars = " + str(intCountOfPossibleChars)) # 131 with MCLRNF1 image
cv2.imshow("2a", imgContours)
# end if # show steps #########################################################################
return listOfPossibleChars
# end function
###################################################################################################
def extractPlate(imgOriginal, listOfMatchingChars):
possiblePlate = PossiblePlate.PossiblePlate() # this will be the return value
listOfMatchingChars.sort(key = lambda matchingChar: matchingChar.intCenterX) # sort chars from left to right based on x position
# calculate the center point of the plate
fltPlateCenterX = (listOfMatchingChars[0].intCenterX + listOfMatchingChars[len(listOfMatchingChars) - 1].intCenterX) / 2.0
fltPlateCenterY = (listOfMatchingChars[0].intCenterY + listOfMatchingChars[len(listOfMatchingChars) - 1].intCenterY) / 2.0
ptPlateCenter = fltPlateCenterX, fltPlateCenterY
# calculate plate width and height
intPlateWidth = int((listOfMatchingChars[len(listOfMatchingChars) - 1].intBoundingRectX + listOfMatchingChars[len(listOfMatchingChars) - 1].intBoundingRectWidth - listOfMatchingChars[0].intBoundingRectX) * PLATE_WIDTH_PADDING_FACTOR)
intTotalOfCharHeights = 0
for matchingChar in listOfMatchingChars:
intTotalOfCharHeights = intTotalOfCharHeights + matchingChar.intBoundingRectHeight
# end for
fltAverageCharHeight = intTotalOfCharHeights / len(listOfMatchingChars)
intPlateHeight = int(fltAverageCharHeight * PLATE_HEIGHT_PADDING_FACTOR)
# calculate correction angle of plate region
fltOpposite = listOfMatchingChars[len(listOfMatchingChars) - 1].intCenterY - listOfMatchingChars[0].intCenterY
fltHypotenuse = DetectChars.distanceBetweenChars(listOfMatchingChars[0], listOfMatchingChars[len(listOfMatchingChars) - 1])
fltCorrectionAngleInRad = math.asin(fltOpposite / fltHypotenuse)
fltCorrectionAngleInDeg = fltCorrectionAngleInRad * (180.0 / math.pi)
# pack plate region center point, width and height, and correction angle into rotated rect member variable of plate
possiblePlate.rrLocationOfPlateInScene = ( tuple(ptPlateCenter), (intPlateWidth, intPlateHeight), fltCorrectionAngleInDeg )
# final steps are to perform the actual rotation
# get the rotation matrix for our calculated correction angle
rotationMatrix = cv2.getRotationMatrix2D(tuple(ptPlateCenter), fltCorrectionAngleInDeg, 1.0)
height, width, numChannels = imgOriginal.shape # unpack original image width and height
imgRotated = cv2.warpAffine(imgOriginal, rotationMatrix, (width, height)) # rotate the entire image
imgCropped = cv2.getRectSubPix(imgRotated, (intPlateWidth, intPlateHeight), tuple(ptPlateCenter))
possiblePlate.imgPlate = imgCropped # copy the cropped plate image into the applicable member variable of the possible plate
return possiblePlate
# end function