-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem27.py
72 lines (56 loc) · 1.75 KB
/
problem27.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python
# -*- coding:utf-8 -*-
'''
Quadratic primes
Problem 27
Euler discovered the remarkable quadratic formula:
n^2 + n + 41
It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 40^2 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 41^2 + 41 + 41 is clearly divisible by 41.
The incredible formula n² - 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, -79 and 1601, is -126479.
Considering quadratics of the form:
n^2 + an + b, where |a| < 1000 and |b| < 1000
where |n| is the modulus/absolute value of n
e.g. |11| = 11 and |−4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.
'''
import math
primeSet = set()
def isPrime(n):
if n <= 0:
return False
if n in primeSet:
return True
if n == 2:
primeSet.add(n)
return True
upper = int(math.sqrt(n))
for x in xrange(2, upper):
if n % x == 0:
return False
primeSet.add(n)
return True
def getNumber(a, b):
# n^2+an+b
number = 0
while True:
tmp = number**2 + a * number + b
if not isPrime(tmp):
break
else:
number += 1
return number
def main():
for x in xrange(2, 1001):
isPrime(x)
b_list = list(primeSet)
max = 0
result = 0
for a in xrange(-1000, 1001):
for b in b_list:
tmp = getNumber(a, b)
if tmp > max:
result = a * b
max = tmp
print result
if __name__ == '__main__':
main()