-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
157 lines (144 loc) · 5.86 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gymnasium as gym
import torch
from model import model_parser, get_model_name
from vis import test, genSpace
import argparse
import os
import numpy as np
import yaml
SEED=8192
config_dir = os.path.join(".","config")
logger_dir = os.path.join(".","logger")
if __name__=="__main__":
# 0. random seeds
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
np.random.seed(SEED)
# 1. parser
parser = argparse.ArgumentParser()
parser.add_argument("--env_name",type=str,default="Hopper-v2")
parser.add_argument("--episode",type=int,default=3000)
parser.add_argument("--maxT",type=int,default=10000)
parser.add_argument("--gamma",type=float,default=0.99)
parser.add_argument("--batch_size",type=int,default=64)
parser.add_argument("--mtype",type=str,default="",help="DQN or DDPG or A2C or A3C")
parser.add_argument("--load",action="store_true",default=False)
args=parser.parse_args()
world_name=args.env_name
episode=args.episode
maxT=args.maxT
gamma=args.gamma
batch_size=args.batch_size
mtype=args.mtype
load=args.load
# 2. build world
env=gym.make(world_name,maxT,render_mode=None)
state_dim, action_space = genSpace(env)
# 3. config file and logger file
mtype=get_model_name(mtype, action_space)
print(mtype)
config_path = os.path.join(config_dir,world_name,"{}.yaml".format(mtype))
with open(config_path,"rt") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print(config)
os.makedirs(os.path.join(logger_dir,world_name),exist_ok=True)
logger_path = os.path.join(logger_dir,world_name,"{}.txt".format(mtype))
if load:
logger = open(logger_path,"rt")
ori_log = logger.read()
next_episode = int(ori_log.split('\n')[-2].split(' ')[0])+1
logger.close()
logger = open(logger_path,"wt")
# 4. initialize model
config["gamma"]=gamma
config["world_name"]=world_name
config["maxT"]=1000 if mtype=="DDPG" or mtype=="A2C" or mtype=="A3C" else maxT # The maxT for continous control is always 1000.
if "episode" in config:
episode=config["episode"]
else:
config["episode"]=episode
model=model_parser(mtype,config,state_dim,action_space)
if load:
model.load(dir_path=os.path.join(".","ckpts",world_name,mtype))
maxT = config["maxT"]
env=gym.make(world_name,maxT,render_mode=None)
# 5. A3C parallel training is handled inside its class
if mtype=="A3C":
model.set_train()
reward_list = model.train(None,None)
[print("{:.2f}".format(reward),file=logger) for reward in reward_list]
logger.close()
model.load(dir_path=os.path.join(".","ckpts",world_name,"A3C"))
best_reward = model._test()
print("Best Reward for A3C: {:.3f}".format(best_reward))
print("Finish Training!")
exit()
# 5. train the agent
best_score = -1000000.
loss_list = []
step_list = []
reward_list = []
try:
for e in range(0 if not load else next_episode,episode):
# set model to train!
model.set_train()
s, info = env.reset()
frame = 0
avg_loss = 0.
itr = 0.
total_reward = 0.
for t in range(maxT):
# agent policy that uses the observation and info
a = model.action(s,t,e,episode)
# get the s_{t+1}, r_t, end or not from the env
try:
sp, r, terminated, truncated, info = env.step(a)
except TypeError:
print(a)
raise TypeError
# update buffer
model.update([s.tolist(),
a.tolist() if isinstance(a,np.ndarray) else a,
r,sp.tolist(),terminated])
# update state
s=sp
frame += 1
total_reward += r
if model.need_train(frame,terminated or truncated,e):
loss = model.train(batch_size, gamma)
avg_loss += loss
itr += 1
# For every synT steps, synchronize 2 nets.
if model.need_sync():
model.sync()
# logging
if terminated or truncated:
s, info = env.reset()
model.episode_end()
print("Episode: {}, Loss: {:.4f}, Terminated Steps: {}, Total Reward: {:.3f}".format(e,avg_loss/itr,t,total_reward))
assert avg_loss/itr < 2_000 # weight decay dominate the loss
loss_list.append(avg_loss/itr)
step_list.append(t)
reward_list.append(total_reward)
break
if e % 20 == 0:
model.set_test()
avg_score,_=test(world_name,model,action_space,maxT=maxT,test_times=2,render_mode=None)
print("Episode: {}, Average Reward: {:.3f}".format(e,avg_score))
if avg_score > best_score:
best_score = avg_score
model.save(dir_path=os.path.join(".","ckpts",world_name,mtype))
finally:
try:
# 4. save the logger
env.close()
if load:
print(ori_log,file=logger)
[print("{} {:.2f} {} {:.2f}".format(j + (0 if not load else next_episode),loss_list[j],step_list[j],reward_list[j]),file=logger) for j in range(episode)]
finally:
# 5. test the agent
model.load(dir_path=os.path.join(".","ckpts",world_name,mtype))
avg_score,_=test(world_name,model,action_space,maxT=maxT,test_times=10,render_mode=None)
print("average score: {:.2f}".format(avg_score))