-
Notifications
You must be signed in to change notification settings - Fork 771
/
74_debugging-the-training-pipeline-(tensorflow).srt
900 lines (720 loc) · 21.3 KB
/
74_debugging-the-training-pipeline-(tensorflow).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
1
00:00:00,212 --> 00:00:02,879
(空气呼啸)
(air whooshing)
2
00:00:04,680 --> 00:00:08,130
- 你代码中的一些错误非常简单。
- Some bugs in your code are very straightforward.
3
00:00:08,130 --> 00:00:11,580
你尝试运行它,某处出现语法错误,
You try running it, you get a syntax error somewhere,
4
00:00:11,580 --> 00:00:14,490
Python 准确地告诉你在哪里,然后你修复它。
Python tells you exactly where, and you fix it.
5
00:00:14,490 --> 00:00:17,760
这很棒,简单而且令人满意。
This is great, it's simple and it's satisfying.
6
00:00:17,760 --> 00:00:20,310
但有时,事情会崩溃
Sometimes, though, things crash
7
00:00:20,310 --> 00:00:23,670
错误是无法理解的。
and the error is impossible to understand.
8
00:00:23,670 --> 00:00:26,700
由于一些原因,这种情况在机器学习中经常发生,
This happens a lot in machine learning for a few reasons,
9
00:00:26,700 --> 00:00:29,310
你正在处理大数据结构,
you're working with big data structures,
10
00:00:29,310 --> 00:00:31,440
你正在使用这些大而复杂的库
you're using these big, complex libraries
11
00:00:31,440 --> 00:00:33,420
有很多活动部件,
with a lot of moving parts,
12
00:00:33,420 --> 00:00:35,310
而且你正在做大量的 GPU 计算,
and also you're doing a lot of GPU computing,
13
00:00:35,310 --> 00:00:38,490
而且一般来说调试起来要困难得多。
and that in general is much more difficult to debug.
14
00:00:38,490 --> 00:00:40,260
在 Keras 中还有一个问题
In Keras there's the additional problem
15
00:00:40,260 --> 00:00:43,140
你的模型通常在执行前编译,
that your models are often compiled before execution,
16
00:00:43,140 --> 00:00:44,400
这对性能很有帮助
which is great for performance
17
00:00:44,400 --> 00:00:47,430
但这也使调试它们变得非常困难。
but it makes debugging them very difficult as well.
18
00:00:47,430 --> 00:00:50,370
所以,这将是一个关于该怎么做的视频
So, this is going to be a video about what to do
19
00:00:50,370 --> 00:00:52,410
当你遇到那些噩梦般的一个错误时
when you run into one of those nightmare bugs
20
00:00:52,410 --> 00:00:55,210
而且你只是不知道从哪里开始修复它。
and you just have no idea where to begin with fixing it.
21
00:00:56,370 --> 00:00:58,920
所以,给你一些直觉
So, to give you some intuitions for
22
00:00:58,920 --> 00:01:01,530
最常见的错误
the most common things that go wrong
23
00:01:01,530 --> 00:01:03,573
并导致这些奇怪的问题,
and cause these weird issues,
24
00:01:04,800 --> 00:01:07,530
并告诉你在哪里寻找错误的来源
and show you where to look for the sources of bugs
25
00:01:07,530 --> 00:01:10,560
你遇到的,让我们使用这个示例脚本。
that you encounter, let's use this example script.
26
00:01:10,560 --> 00:01:12,900
因此,我将在这里分两部分向你展示。
So, I'll show it to you here in two parts.
27
00:01:12,900 --> 00:01:16,410
首先,我们做所有的导入,我们加载一个数据集,
First, we do all our imports, we load a dataset,
28
00:01:16,410 --> 00:01:20,280
我们创建了 tokenizer 并对数据集进行分词。
we create our tokenizer and we tokenize the dataset.
29
00:01:20,280 --> 00:01:23,640
接下来,我们将数据集转换为 TensorFlow 数据集,
Next, we convert our datasets to TensorFlow datasets,
30
00:01:23,640 --> 00:01:26,100
这就是 tf.data.Dataset,
so that's tf.data.Dataset,
31
00:01:26,100 --> 00:01:28,500
这样我们就可以拟合它们,
and that's so that we can run fit on them,
32
00:01:28,500 --> 00:01:31,170
然后我们从预训练的 checkpoint 加载我们的模型,
and then we load our model from a pretrained checkpoint,
33
00:01:31,170 --> 00:01:33,870
我们对其进行编译,并将其与这些数据集相匹配。
we compile it and we fit it with those datasets.
34
00:01:33,870 --> 00:01:35,970
所以,这看起来很简单,
So, this seems straightforward enough,
35
00:01:35,970 --> 00:01:38,220
这与我们之前在课程中所做的类似。
it's similar to what we've done in the course before.
36
00:01:38,220 --> 00:01:40,650
但请注意,这是令人毛骨悚然的代码
But beware, this is spooky code
37
00:01:40,650 --> 00:01:43,590
并隐藏着许多黑暗而神秘的秘密。
and hides many dark and mysterious secrets.
38
00:01:43,590 --> 00:01:46,050
那么,当我们运行它时会发生什么?
So, what happens when we run it?
39
00:01:46,050 --> 00:01:48,840
好吧,这不是很好。
Well, it's not great.
40
00:01:48,840 --> 00:01:52,320
所以,我们收到了这个错误信息,但它是什么意思呢?
So, we get this error message, but what does it mean?
41
00:01:52,320 --> 00:01:55,470
我们试图训练我们的数据,但我们没有梯度?
We tried to train on our data, but we got no gradient?
42
00:01:55,470 --> 00:01:59,130
这很令人困惑,我的意思是,我们从何开始
It's pretty perplexing, I mean, how do we even begin
43
00:01:59,130 --> 00:02:01,500
调试没有得到梯度?
to debug not getting a gradient?
44
00:02:01,500 --> 00:02:03,930
所以,当你得到的错误没有立即提示
So, when the error you get doesn't immediately suggest
45
00:02:03,930 --> 00:02:06,630
问题出在哪里,最好的解决办法
where the problem is, the best solution
46
00:02:06,630 --> 00:02:09,180
通常是按顺序遍历事物,
is often to walk through things in sequence,
47
00:02:09,180 --> 00:02:12,900
确保在每个阶段输出看起来都是正确的,
making sure at each stage that the outputs look right,
48
00:02:12,900 --> 00:02:15,300
那时一切看起来都很好。
that everything looks okay at that point.
49
00:02:15,300 --> 00:02:17,730
而且,当然,这意味着开始的地方
And, of course, that means the place to start
50
00:02:17,730 --> 00:02:19,473
总是检查你的数据。
is always to check your data.
51
00:02:20,670 --> 00:02:22,050
所以,最好的办法是确保
So, the best way to make sure
52
00:02:22,050 --> 00:02:24,480
你给模型的数据是好的,
that the data you're giving the model is good,
53
00:02:24,480 --> 00:02:27,690
是从 tf.data.Dataset 中抓取一批
is to grab a batch from the tf.data.Dataset
54
00:02:27,690 --> 00:02:29,520
你的模型正在训练,
that your model is training on,
55
00:02:29,520 --> 00:02:31,560
那是因为它就在最后
and that's because it's right at the end
56
00:02:31,560 --> 00:02:33,990
的数据 pipeline 。
of the data pipeline.
57
00:02:33,990 --> 00:02:36,990
所以这意味着如果这些输出是好的,
And so that means that if those outputs are good,
58
00:02:36,990 --> 00:02:39,990
你可以保证你的数据 pipeline 运行良好。
you're guaranteed that your data pipeline is working well.
59
00:02:39,990 --> 00:02:42,600
所以,我们可以通过遍历数据集来做到这一点
So, we can do that by looping over the dataset
60
00:02:42,600 --> 00:02:44,790
进行一次迭代然后中断,
for one iteration and then breaking,
61
00:02:44,790 --> 00:02:46,980
这给了我们一个分批。
and that gives us a single batch.
62
00:02:46,980 --> 00:02:49,443
那么,当我们检查该批次时,我们得到了什么?
So, what do we get when we inspect that batch?
63
00:02:50,460 --> 00:02:52,500
我们会看到我们没有得到任何梯度
We'll see that we're not getting any gradient
64
00:02:52,500 --> 00:02:55,530
因为我们没有将标签传递给 Keras。
because we're not passing labels to Keras.
65
00:02:55,530 --> 00:02:57,510
所以,我们的标签在批次中,
So, our labels are in the batch,
66
00:02:57,510 --> 00:02:59,670
但它们是输入字典中的键
but they're a key in the input dictionary
67
00:02:59,670 --> 00:03:02,340
而且它们不像 Keras 期望的那样是一个单独的标签,
and they're not a separate label as Keras expects,
68
00:03:02,340 --> 00:03:04,830
所以这是你会遇到的最常见的问题之一
so this is one of the most common issues you'll encounter
69
00:03:04,830 --> 00:03:07,590
使用 TensorFlow 训练 Transformers 模型时。
when training Transformers models with TensorFlow.
70
00:03:07,590 --> 00:03:10,980
我们的模型都可以在内部计算损失,
Our models can all compute loss internally,
71
00:03:10,980 --> 00:03:13,140
但要将损失用于训练
but to use that loss for training
72
00:03:13,140 --> 00:03:15,960
标签需要在输入字典中传递,
the labels need to be passed in the input dictionary,
73
00:03:15,960 --> 00:03:17,940
其模型可以看到它们。
where the model can see them.
74
00:03:17,940 --> 00:03:20,280
这种内部损失是我们使用的损失
This internal loss is the loss that we use
75
00:03:20,280 --> 00:03:23,760
当我们在调用编译时没有指定损失时,
when we don't specify a loss when we call compile,
76
00:03:23,760 --> 00:03:25,660
当我们不指定损失参数时。
when we don't specify a loss argument.
77
00:03:26,520 --> 00:03:27,870
所以,另一方面,Keras,
So, Keras, on the other hand,
78
00:03:27,870 --> 00:03:30,570
通常期望标签单独传递
usually expects labels to be passed separately
79
00:03:30,570 --> 00:03:32,130
从输入字典,
from the input dictionary,
80
00:03:32,130 --> 00:03:34,110
并且对模型不可见,
and not to be visible to the model,
81
00:03:34,110 --> 00:03:36,600
损失计算通常会失败
and loss computations will usually fail
82
00:03:36,600 --> 00:03:38,220
如果你不那样做
if you don't do that
83
00:03:38,220 --> 00:03:40,380
所以我们需要选择其中之一,
So we need to choose one or the other,
84
00:03:40,380 --> 00:03:42,780
要么我们使用模型的内部损失
either we use the model's internal loss
85
00:03:42,780 --> 00:03:44,940
并将标签保留在原处,
and keep the labels where they are,
86
00:03:44,940 --> 00:03:46,980
或者我们继续使用 Keras 损失
or we keep using Keras losses
87
00:03:46,980 --> 00:03:50,520
但我们将标签移动到 Keras 期望的地方。
but we move the labels to the place Keras expects them.
88
00:03:50,520 --> 00:03:53,310
所以,还是简单点,让我们解决这个问题
So, or simplicity here, let's fix this issue
89
00:03:53,310 --> 00:03:55,860
通过使用模型的内部损失,
by using the model's internal losses,
90
00:03:55,860 --> 00:03:57,900
我们通过删除损失参数来做到这一点
and we do that by removing the loss argument
91
00:03:57,900 --> 00:03:59,343
从调用编译。
from the call to compile.
92
00:04:00,540 --> 00:04:03,000
那么,如果我们现在尝试训练会发生什么?
So, what happens if we try training now?
93
00:04:03,000 --> 00:04:08,000
所以我们用它重新编译,我们调用 model.fit,会发生什么?
So we recompile with that, we call model.fit, what happens?
94
00:04:08,220 --> 00:04:13,050
好吧,这次它运行了,但现在我们消失了 NaN。
Well, it runs this time but now we get a loss of NaN.
95
00:04:13,050 --> 00:04:16,440
所以,这不好,NaN 表示不是数字
So, that's not good, NaN means not a number
96
00:04:16,440 --> 00:04:19,140
总的来说,这不是一个好损失。
and it's not a good loss to have in general.
97
00:04:19,140 --> 00:04:21,000
事实上,如果我们现在检查我们的模型,
In fact, if we inspect our model now,
98
00:04:21,000 --> 00:04:23,970
我们会看到不仅所有的输出都是 NaN,
we'll see that not only are all the outputs NaN,
99
00:04:23,970 --> 00:04:27,600
所有的权重和损失也是 NaN。
all the weights are NaN as well, as well as the loss.
100
00:04:27,600 --> 00:04:30,810
所以一旦一个 NaN 悄悄爬进你的计算,
So once a single NaN creeps into your computations,
101
00:04:30,810 --> 00:04:34,530
它倾向于传播,因为它从损失传播
it tends to spread, because it propagates from the loss
102
00:04:34,530 --> 00:04:36,420
一旦它处于损失状态,它就会处于梯度状态,
and once it's at the loss it's at the gradient,
103
00:04:36,420 --> 00:04:37,530
它达到梯度,
it gets to the gradient,
104
00:04:37,530 --> 00:04:38,910
然后一旦它处于梯度中
and then once it's in the gradient
105
00:04:38,910 --> 00:04:41,280
它进入权重更新,
it enters the weight updates,
106
00:04:41,280 --> 00:04:43,980
然后你所有的权重更新最终也都是 NaN 。
and then all your weight updates end up as NaN as well.
107
00:04:43,980 --> 00:04:46,950
所以 NaN 在这里完全破坏了我们的模型,
So NaN just completely destroyed our model here,
108
00:04:46,950 --> 00:04:49,560
但它首先潜入何处?
but where did it creep in first?
109
00:04:49,560 --> 00:04:52,140
所以要找出答案,我们需要回到一个点
So to find out, we need to back to a point
110
00:04:52,140 --> 00:04:53,490
在模型被摧毁之前,
before the model was destroyed,
111
00:04:53,490 --> 00:04:55,440
我们需要重新初始化模型
we need to re-initialize the model
112
00:04:55,440 --> 00:04:58,590
并查看第一批的输出。
and look at the outputs for just the first batch.
113
00:04:58,590 --> 00:04:59,850
当我们这样做时,
And when we do that,
114
00:04:59,850 --> 00:05:02,790
我们看到 NaN 首先出现在损失中,
we see that NaN first appears in the loss,
115
00:05:02,790 --> 00:05:04,980
但仅在某些样本中。
but only in some samples.
116
00:05:04,980 --> 00:05:06,540
所以你可以更详细地看到这个
So you can see this in more detail
117
00:05:06,540 --> 00:05:09,090
在课程笔记的随附部分中,
in the accompanying section of the course notes,
118
00:05:09,090 --> 00:05:11,220
我在这里移动得相当快,
I am moving fairly quickly here,
119
00:05:11,220 --> 00:05:13,500
但我们发现如果我们看一下标签,
but we find that if we look at the labels,
120
00:05:13,500 --> 00:05:17,790
损失为 NaN 的样本的标签均为 2。
the samples with a loss of NaN all have a label of two.
121
00:05:17,790 --> 00:05:19,950
所以这给了我们一个非常有力的线索,
So this gives us a very strong clue,
122
00:05:19,950 --> 00:05:24,060
如果我们使用 model.config.num_labels 检查模型,
if we check the model with model.config.num_labels,
123
00:05:24,060 --> 00:05:26,760
我们看到模型认为只有两个标签,
we see that the model thinks there's only two labels,
124
00:05:26,760 --> 00:05:28,950
但如果我们看到值为二,
but if we see a value of two,
125
00:05:28,950 --> 00:05:31,200
这意味着至少有三个标签
that means there's at least three labels
126
00:05:31,200 --> 00:05:33,630
因为 0 也是一个标签。
because 0 is a label as well.
127
00:05:33,630 --> 00:05:35,070
所以我们得到大量 NaN
So we got a lots of NaN
128
00:05:35,070 --> 00:05:37,887
因为我们的标签集中有一个 “不可能” 的标签,
because we got an "impossible" label in our label set,
129
00:05:37,887 --> 00:05:41,010
并修复我们需要返回并设置模型
and to fix that we need to go back and set the model
130
00:05:41,010 --> 00:05:43,650
期待正确数量的标签,
to expect the right number of labels,
131
00:05:43,650 --> 00:05:45,870
所以我们可以设置 num_labels=3
so we can set num_labels=3
132
00:05:45,870 --> 00:05:48,540
当我们初始化模型用 from_pretrained 时,
when we initialize the model but from_pretrained,
133
00:05:48,540 --> 00:05:51,450
现在希望我们可以避免这个问题。
and now hopefully we can avoid this issue.
134
00:05:51,450 --> 00:05:54,660
所以,现在我们认为我们的数据很好,我们的模型也很好
So, now we think our data is good and our model is good
135
00:05:54,660 --> 00:05:56,220
所以训练应该有效
and so training should work
136
00:05:56,220 --> 00:06:00,510
但是如果我们尝试运行 model.fit,我们,嗯……
but if we try running model.fit, we, well...
137
00:06:00,510 --> 00:06:02,040
我的意思是,我们确实有损失,
I mean, we do get a loss,
138
00:06:02,040 --> 00:06:03,930
这是一个数字,它正在下降
it is a number and it is going down
139
00:06:03,930 --> 00:06:06,090
但它不会很快下降
but it's not going down very quickly
140
00:06:06,090 --> 00:06:07,770
如果我们一直运行这个,
and if we keep running this out,
141
00:06:07,770 --> 00:06:10,980
我们会发现它停在相当高的损失值处。
we'll find that it stalls at a fairly high loss value.
142
00:06:10,980 --> 00:06:12,450
发生什么了?
So, what's going on?
143
00:06:12,450 --> 00:06:14,130
好吧,当一切正常时,
Well, when things are mostly working,
144
00:06:14,130 --> 00:06:16,620
但训练只是很慢或有点奇怪,
but training is just slow or a bit odd,
145
00:06:16,620 --> 00:06:19,470
这通常是查看优化器的好时机
that can often be a good time to look at your optimizer
146
00:06:19,470 --> 00:06:22,020
和你的训练超参数。
and your training hyperparameters.
147
00:06:22,020 --> 00:06:23,460
这就是我想提的地方
And this is where I want to mention
148
00:06:23,460 --> 00:06:25,320
最常见的问题来源之一
one of the most common sources of issues
149
00:06:25,320 --> 00:06:27,000
当你使用 Keras 时,
when you're working with Keras,
150
00:06:27,000 --> 00:06:30,870
你可以用字符串命名优化器,
you can name things like optimizers with strings,
151
00:06:30,870 --> 00:06:33,180
所以 Keras 支持它,而且非常方便,
so Keras supports that and it's very convenient,
152
00:06:33,180 --> 00:06:35,460
但如果你这样做所有的选择
but if you do that all of the options
153
00:06:35,460 --> 00:06:38,400
默默地设置为默认值。
get silently set to their default values.
154
00:06:38,400 --> 00:06:41,190
所以我们将优化器指定为 Adam,
So we specified our optimizer as Adam,
155
00:06:41,190 --> 00:06:43,110
但在这个过程中我们无形中得到了
but in the process we invisibly got
156
00:06:43,110 --> 00:06:46,260
默认学习率,即 1e-3,
the default learning rate, which is 1e-3,
157
00:06:46,260 --> 00:06:48,630
或 10 的 -3 次方。
or 10 to the power of -3.
158
00:06:48,630 --> 00:06:50,550
所以这个学习率太高了
So this learning rate is way too high
159
00:06:50,550 --> 00:06:52,530
用于训练 transformer 模型,
for training transformer models,
160
00:06:52,530 --> 00:06:55,620
我们应该回去直接指定学习率,
we should go back and specify the learning rate directly,
161
00:06:55,620 --> 00:06:57,060
不使用字符串。
not using a string.
162
00:06:57,060 --> 00:07:01,290
所以,这里的好值在 1e-5 和 1e-4 之间
So, good values here are between 1e-5 and 1e-4
163
00:07:01,290 --> 00:07:04,233
所以让我们平分差价并选择 5e-5。
so let's split the difference and pick 5e-5.
164
00:07:05,310 --> 00:07:06,990
所以如果你用那个重新编译,
So if you recompile with that,
165
00:07:06,990 --> 00:07:09,840
你最终会发现训练确实有效。
you'll find that training actually works, at last.
166
00:07:09,840 --> 00:07:11,700
损失有效减少
The loss goes down efficiently
167
00:07:11,700 --> 00:07:14,070
并且收敛到一个较低的值。
and it converges to a lower value.
168
00:07:14,070 --> 00:07:16,410
所以,再一次,我确实很快地完成了这个
So, again, I did go through this quite quickly
169
00:07:16,410 --> 00:07:18,720
我强烈建议查看课程笔记
and I strongly recommend checking out the course notes
170
00:07:18,720 --> 00:07:20,040
要更详细地了解这一点,
to see this in more detail,
171
00:07:20,040 --> 00:07:21,600
并自己试验代码
and to experiment with the code yourself
172
00:07:21,600 --> 00:07:23,490
看看错误是什么样的
and see what the errors look like
173
00:07:23,490 --> 00:07:25,380
以及如何解决他们,
and how you can approach them,
174
00:07:25,380 --> 00:07:27,930
但我希望我在这里给了你一个简短的总结
but I hope I've given you here a quick summary
175
00:07:27,930 --> 00:07:30,510
最常见的错误
of the most common bugs
176
00:07:30,510 --> 00:07:32,880
也许是最常见的调试方法
and maybe the most common debugging approaches
177
00:07:32,880 --> 00:07:33,960
来对付他们。
to dealing with them.
178
00:07:33,960 --> 00:07:37,020
所以,祝你好运,记得多休息
So, good luck, and remember to take plenty of breaks
179
00:07:37,020 --> 00:07:38,970
如果你的代码给你带来困难。
if your code is giving you a hard time.
180
00:07:39,805 --> 00:07:42,472
(空气呼啸)
(air whooshing)