-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathmodel_loading_utils.py
522 lines (460 loc) · 21.2 KB
/
model_loading_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import os
from array import array
from collections import OrderedDict
from pathlib import Path
from typing import Dict, List, Optional, Union
from zipfile import is_zipfile
import safetensors
import torch
from huggingface_hub import DDUFEntry
from huggingface_hub.utils import EntryNotFoundError
from ..quantizers import DiffusersQuantizer
from ..utils import (
GGUF_FILE_EXTENSION,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_FILE_EXTENSION,
WEIGHTS_INDEX_NAME,
_add_variant,
_get_model_file,
deprecate,
is_accelerate_available,
is_gguf_available,
is_torch_available,
is_torch_version,
logging,
)
logger = logging.get_logger(__name__)
_CLASS_REMAPPING_DICT = {
"Transformer2DModel": {
"ada_norm_zero": "DiTTransformer2DModel",
"ada_norm_single": "PixArtTransformer2DModel",
}
}
if is_accelerate_available():
from accelerate import infer_auto_device_map
from accelerate.utils import get_balanced_memory, get_max_memory, offload_weight, set_module_tensor_to_device
# Adapted from `transformers` (see modeling_utils.py)
def _determine_device_map(
model: torch.nn.Module, device_map, max_memory, torch_dtype, keep_in_fp32_modules=[], hf_quantizer=None
):
if isinstance(device_map, str):
special_dtypes = {}
if hf_quantizer is not None:
special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
special_dtypes.update(
{
name: torch.float32
for name, _ in model.named_parameters()
if any(m in name for m in keep_in_fp32_modules)
}
)
target_dtype = torch_dtype
if hf_quantizer is not None:
target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)
no_split_modules = model._get_no_split_modules(device_map)
device_map_kwargs = {"no_split_module_classes": no_split_modules}
if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
device_map_kwargs["special_dtypes"] = special_dtypes
elif len(special_dtypes) > 0:
logger.warning(
"This model has some weights that should be kept in higher precision, you need to upgrade "
"`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
)
if device_map != "sequential":
max_memory = get_balanced_memory(
model,
dtype=torch_dtype,
low_zero=(device_map == "balanced_low_0"),
max_memory=max_memory,
**device_map_kwargs,
)
else:
max_memory = get_max_memory(max_memory)
if hf_quantizer is not None:
max_memory = hf_quantizer.adjust_max_memory(max_memory)
device_map_kwargs["max_memory"] = max_memory
device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
if hf_quantizer is not None:
hf_quantizer.validate_environment(device_map=device_map)
return device_map
def _fetch_remapped_cls_from_config(config, old_class):
previous_class_name = old_class.__name__
remapped_class_name = _CLASS_REMAPPING_DICT.get(previous_class_name).get(config["norm_type"], None)
# Details:
# https://github.com/huggingface/diffusers/pull/7647#discussion_r1621344818
if remapped_class_name:
# load diffusers library to import compatible and original scheduler
diffusers_library = importlib.import_module(__name__.split(".")[0])
remapped_class = getattr(diffusers_library, remapped_class_name)
logger.info(
f"Changing class object to be of `{remapped_class_name}` type from `{previous_class_name}` type."
f"This is because `{previous_class_name}` is scheduled to be deprecated in a future version. Note that this"
" DOESN'T affect the final results."
)
return remapped_class
else:
return old_class
def _determine_param_device(param_name: str, device_map: Optional[Dict[str, Union[int, str, torch.device]]]):
"""
Find the device of param_name from the device_map.
"""
if device_map is None:
return "cpu"
else:
module_name = param_name
# find next higher level module that is defined in device_map:
# bert.lm_head.weight -> bert.lm_head -> bert -> ''
while len(module_name) > 0 and module_name not in device_map:
module_name = ".".join(module_name.split(".")[:-1])
if module_name == "" and "" not in device_map:
raise ValueError(f"{param_name} doesn't have any device set.")
return device_map[module_name]
def load_state_dict(
checkpoint_file: Union[str, os.PathLike],
dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
disable_mmap: bool = False,
map_location: Union[str, torch.device] = "cpu",
):
"""
Reads a checkpoint file, returning properly formatted errors if they arise.
"""
# TODO: maybe refactor a bit this part where we pass a dict here
if isinstance(checkpoint_file, dict):
return checkpoint_file
try:
file_extension = os.path.basename(checkpoint_file).split(".")[-1]
if file_extension == SAFETENSORS_FILE_EXTENSION:
if dduf_entries:
# tensors are loaded on cpu
with dduf_entries[checkpoint_file].as_mmap() as mm:
return safetensors.torch.load(mm)
if disable_mmap:
return safetensors.torch.load(open(checkpoint_file, "rb").read())
else:
return safetensors.torch.load_file(checkpoint_file, device=map_location)
elif file_extension == GGUF_FILE_EXTENSION:
return load_gguf_checkpoint(checkpoint_file)
else:
extra_args = {}
weights_only_kwarg = {"weights_only": True} if is_torch_version(">=", "1.13") else {}
# mmap can only be used with files serialized with zipfile-based format.
if (
isinstance(checkpoint_file, str)
and map_location != "meta"
and is_torch_version(">=", "2.1.0")
and is_zipfile(checkpoint_file)
and not disable_mmap
):
extra_args = {"mmap": True}
return torch.load(checkpoint_file, map_location=map_location, **weights_only_kwarg, **extra_args)
except Exception as e:
try:
with open(checkpoint_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please install "
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
"you cloned."
)
else:
raise ValueError(
f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
"model. Make sure you have saved the model properly."
) from e
except (UnicodeDecodeError, ValueError):
raise OSError(
f"Unable to load weights from checkpoint file for '{checkpoint_file}' " f"at '{checkpoint_file}'. "
)
def load_model_dict_into_meta(
model,
state_dict: OrderedDict,
dtype: Optional[Union[str, torch.dtype]] = None,
model_name_or_path: Optional[str] = None,
hf_quantizer: Optional[DiffusersQuantizer] = None,
keep_in_fp32_modules: Optional[List] = None,
device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None,
unexpected_keys: Optional[List[str]] = None,
offload_folder: Optional[Union[str, os.PathLike]] = None,
offload_index: Optional[Dict] = None,
state_dict_index: Optional[Dict] = None,
state_dict_folder: Optional[Union[str, os.PathLike]] = None,
) -> List[str]:
"""
This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
params on a `meta` device. It replaces the model params with the data from the `state_dict`
"""
is_quantized = hf_quantizer is not None
empty_state_dict = model.state_dict()
for param_name, param in state_dict.items():
if param_name not in empty_state_dict:
continue
set_module_kwargs = {}
# We convert floating dtypes to the `dtype` passed. We also want to keep the buffers/params
# in int/uint/bool and not cast them.
# TODO: revisit cases when param.dtype == torch.float8_e4m3fn
if dtype is not None and torch.is_floating_point(param):
if keep_in_fp32_modules is not None and any(
module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
):
param = param.to(torch.float32)
set_module_kwargs["dtype"] = torch.float32
# For quantizers have save weights using torch.float8_e4m3fn
elif hf_quantizer is not None and param.dtype == getattr(torch, "float8_e4m3fn", None):
pass
else:
param = param.to(dtype)
set_module_kwargs["dtype"] = dtype
# For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which
# uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model.
# Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29
old_param = model
splits = param_name.split(".")
for split in splits:
old_param = getattr(old_param, split)
if not isinstance(old_param, (torch.nn.Parameter, torch.Tensor)):
old_param = None
if old_param is not None:
if dtype is None:
param = param.to(old_param.dtype)
if old_param.is_contiguous():
param = param.contiguous()
param_device = _determine_param_device(param_name, device_map)
# bnb params are flattened.
# gguf quants have a different shape based on the type of quantization applied
if empty_state_dict[param_name].shape != param.shape:
if (
is_quantized
and hf_quantizer.pre_quantized
and hf_quantizer.check_if_quantized_param(
model, param, param_name, state_dict, param_device=param_device
)
):
hf_quantizer.check_quantized_param_shape(param_name, empty_state_dict[param_name], param)
else:
model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
raise ValueError(
f"Cannot load {model_name_or_path_str} because {param_name} expected shape {empty_state_dict[param_name].shape}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
)
if param_device == "disk":
offload_index = offload_weight(param, param_name, offload_folder, offload_index)
elif param_device == "cpu" and state_dict_index is not None:
state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
elif is_quantized and (
hf_quantizer.check_if_quantized_param(model, param, param_name, state_dict, param_device=param_device)
):
hf_quantizer.create_quantized_param(
model, param, param_name, param_device, state_dict, unexpected_keys, dtype=dtype
)
else:
set_module_tensor_to_device(model, param_name, param_device, value=param, **set_module_kwargs)
return offload_index, state_dict_index
def _load_state_dict_into_model(
model_to_load, state_dict: OrderedDict, assign_to_params_buffers: bool = False
) -> List[str]:
# Convert old format to new format if needed from a PyTorch state_dict
# copy state_dict so _load_from_state_dict can modify it
state_dict = state_dict.copy()
error_msgs = []
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
# so we need to apply the function recursively.
def load(module: torch.nn.Module, prefix: str = "", assign_to_params_buffers: bool = False):
local_metadata = {}
local_metadata["assign_to_params_buffers"] = assign_to_params_buffers
if assign_to_params_buffers and not is_torch_version(">=", "2.1"):
logger.info("You need to have torch>=2.1 in order to load the model with assign_to_params_buffers=True")
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
module._load_from_state_dict(*args)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".", assign_to_params_buffers)
load(model_to_load, assign_to_params_buffers=assign_to_params_buffers)
return error_msgs
def _fetch_index_file(
is_local,
pretrained_model_name_or_path,
subfolder,
use_safetensors,
cache_dir,
variant,
force_download,
proxies,
local_files_only,
token,
revision,
user_agent,
commit_hash,
dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
):
if is_local:
index_file = Path(
pretrained_model_name_or_path,
subfolder or "",
_add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant),
)
else:
index_file_in_repo = Path(
subfolder or "",
_add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant),
).as_posix()
try:
index_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=index_file_in_repo,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=None,
user_agent=user_agent,
commit_hash=commit_hash,
dduf_entries=dduf_entries,
)
if not dduf_entries:
index_file = Path(index_file)
except (EntryNotFoundError, EnvironmentError):
index_file = None
return index_file
def _fetch_index_file_legacy(
is_local,
pretrained_model_name_or_path,
subfolder,
use_safetensors,
cache_dir,
variant,
force_download,
proxies,
local_files_only,
token,
revision,
user_agent,
commit_hash,
dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
):
if is_local:
index_file = Path(
pretrained_model_name_or_path,
subfolder or "",
SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME,
).as_posix()
splits = index_file.split(".")
split_index = -3 if ".cache" in index_file else -2
splits = splits[:-split_index] + [variant] + splits[-split_index:]
index_file = ".".join(splits)
if os.path.exists(index_file):
deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`."
deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False)
index_file = Path(index_file)
else:
index_file = None
else:
if variant is not None:
index_file_in_repo = Path(
subfolder or "",
SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME,
).as_posix()
splits = index_file_in_repo.split(".")
split_index = -2
splits = splits[:-split_index] + [variant] + splits[-split_index:]
index_file_in_repo = ".".join(splits)
try:
index_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=index_file_in_repo,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=None,
user_agent=user_agent,
commit_hash=commit_hash,
dduf_entries=dduf_entries,
)
index_file = Path(index_file)
deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`."
deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False)
except (EntryNotFoundError, EnvironmentError):
index_file = None
return index_file
def _gguf_parse_value(_value, data_type):
if not isinstance(data_type, list):
data_type = [data_type]
if len(data_type) == 1:
data_type = data_type[0]
array_data_type = None
else:
if data_type[0] != 9:
raise ValueError("Received multiple types, therefore expected the first type to indicate an array.")
data_type, array_data_type = data_type
if data_type in [0, 1, 2, 3, 4, 5, 10, 11]:
_value = int(_value[0])
elif data_type in [6, 12]:
_value = float(_value[0])
elif data_type in [7]:
_value = bool(_value[0])
elif data_type in [8]:
_value = array("B", list(_value)).tobytes().decode()
elif data_type in [9]:
_value = _gguf_parse_value(_value, array_data_type)
return _value
def load_gguf_checkpoint(gguf_checkpoint_path, return_tensors=False):
"""
Load a GGUF file and return a dictionary of parsed parameters containing tensors, the parsed tokenizer and config
attributes.
Args:
gguf_checkpoint_path (`str`):
The path the to GGUF file to load
return_tensors (`bool`, defaults to `True`):
Whether to read the tensors from the file and return them. Not doing so is faster and only loads the
metadata in memory.
"""
if is_gguf_available() and is_torch_available():
import gguf
from gguf import GGUFReader
from ..quantizers.gguf.utils import SUPPORTED_GGUF_QUANT_TYPES, GGUFParameter
else:
logger.error(
"Loading a GGUF checkpoint in PyTorch, requires both PyTorch and GGUF>=0.10.0 to be installed. Please see "
"https://pytorch.org/ and https://github.com/ggerganov/llama.cpp/tree/master/gguf-py for installation instructions."
)
raise ImportError("Please install torch and gguf>=0.10.0 to load a GGUF checkpoint in PyTorch.")
reader = GGUFReader(gguf_checkpoint_path)
parsed_parameters = {}
for tensor in reader.tensors:
name = tensor.name
quant_type = tensor.tensor_type
# if the tensor is a torch supported dtype do not use GGUFParameter
is_gguf_quant = quant_type not in [gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16]
if is_gguf_quant and quant_type not in SUPPORTED_GGUF_QUANT_TYPES:
_supported_quants_str = "\n".join([str(type) for type in SUPPORTED_GGUF_QUANT_TYPES])
raise ValueError(
(
f"{name} has a quantization type: {str(quant_type)} which is unsupported."
"\n\nCurrently the following quantization types are supported: \n\n"
f"{_supported_quants_str}"
"\n\nTo request support for this quantization type please open an issue here: https://github.com/huggingface/diffusers"
)
)
weights = torch.from_numpy(tensor.data.copy())
parsed_parameters[name] = GGUFParameter(weights, quant_type=quant_type) if is_gguf_quant else weights
return parsed_parameters