Skip to content

Commit

Permalink
[Custom pipeline] Easier loading of local pipelines (#1327)
Browse files Browse the repository at this point in the history
* [Custom pipeline] Easier loading of local pipelines

* upgrade black
  • Loading branch information
patrickvonplaten authored Nov 17, 2022
1 parent 3346ec3 commit 632dace
Show file tree
Hide file tree
Showing 3 changed files with 126 additions and 2 deletions.
11 changes: 10 additions & 1 deletion src/diffusers/pipeline_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
import inspect
import os
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

import numpy as np
Expand Down Expand Up @@ -483,8 +484,16 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P
# 2. Load the pipeline class, if using custom module then load it from the hub
# if we load from explicit class, let's use it
if custom_pipeline is not None:
if custom_pipeline.endswith(".py"):
path = Path(custom_pipeline)
# decompose into folder & file
file_name = path.name
custom_pipeline = path.parent.absolute()
else:
file_name = CUSTOM_PIPELINE_FILE_NAME

pipeline_class = get_class_from_dynamic_module(
custom_pipeline, module_file=CUSTOM_PIPELINE_FILE_NAME, cache_dir=custom_pipeline
custom_pipeline, module_file=file_name, cache_dir=custom_pipeline
)
elif cls != DiffusionPipeline:
pipeline_class = cls
Expand Down
101 changes: 101 additions & 0 deletions tests/fixtures/custom_pipeline/what_ever.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


from typing import Optional, Tuple, Union

import torch

from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput


class CustomLocalPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""

def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)

@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[torch.Generator] = None,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
eta (`float`, *optional*, defaults to 0.0):
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""

# Sample gaussian noise to begin loop
image = torch.randn(
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
generator=generator,
)
image = image.to(self.device)

# set step values
self.scheduler.set_timesteps(num_inference_steps)

for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
model_output = self.unet(image, t).sample

# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
image = self.scheduler.step(model_output, t, image).prev_sample

image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)

if not return_dict:
return (image,), "This is a local test"

return ImagePipelineOutput(images=image), "This is a local test"
16 changes: 15 additions & 1 deletion tests/test_pipelines.py
Original file line number Diff line number Diff line change
Expand Up @@ -192,7 +192,7 @@ def test_run_custom_pipeline(self):
# compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
assert output_str == "This is a test"

def test_local_custom_pipeline(self):
def test_local_custom_pipeline_repo(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
Expand All @@ -205,6 +205,20 @@ def test_local_custom_pipeline(self):
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"

def test_local_custom_pipeline_file(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")

assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"

@slow
@require_torch_gpu
def test_load_pipeline_from_git(self):
Expand Down

0 comments on commit 632dace

Please sign in to comment.