|
7 | 7 | #
|
8 | 8 | import os
|
9 | 9 | from functools import partial
|
10 |
| -from typing import List, Optional, Tuple, Union |
| 10 | +from typing import List, Optional, Tuple, Type, Union |
11 | 11 |
|
12 | 12 | import torch
|
13 | 13 | import torch.nn as nn
|
@@ -54,7 +54,7 @@ def __init__(
|
54 | 54 | use_act: bool = True,
|
55 | 55 | use_scale_branch: bool = True,
|
56 | 56 | num_conv_branches: int = 1,
|
57 |
| - act_layer: nn.Module = nn.GELU, |
| 57 | + act_layer: Type[nn.Module] = nn.GELU, |
58 | 58 | ) -> None:
|
59 | 59 | """Construct a MobileOneBlock module.
|
60 | 60 |
|
@@ -426,7 +426,7 @@ def _fuse_bn(
|
426 | 426 | def convolutional_stem(
|
427 | 427 | in_chs: int,
|
428 | 428 | out_chs: int,
|
429 |
| - act_layer: nn.Module = nn.GELU, |
| 429 | + act_layer: Type[nn.Module] = nn.GELU, |
430 | 430 | inference_mode: bool = False
|
431 | 431 | ) -> nn.Sequential:
|
432 | 432 | """Build convolutional stem with MobileOne blocks.
|
@@ -545,7 +545,7 @@ def __init__(
|
545 | 545 | stride: int,
|
546 | 546 | in_chs: int,
|
547 | 547 | embed_dim: int,
|
548 |
| - act_layer: nn.Module = nn.GELU, |
| 548 | + act_layer: Type[nn.Module] = nn.GELU, |
549 | 549 | lkc_use_act: bool = False,
|
550 | 550 | use_se: bool = False,
|
551 | 551 | inference_mode: bool = False,
|
@@ -718,7 +718,7 @@ def __init__(
|
718 | 718 | in_chs: int,
|
719 | 719 | hidden_channels: Optional[int] = None,
|
720 | 720 | out_chs: Optional[int] = None,
|
721 |
| - act_layer: nn.Module = nn.GELU, |
| 721 | + act_layer: Type[nn.Module] = nn.GELU, |
722 | 722 | drop: float = 0.0,
|
723 | 723 | ) -> None:
|
724 | 724 | """Build convolutional FFN module.
|
@@ -890,7 +890,7 @@ def __init__(
|
890 | 890 | dim: int,
|
891 | 891 | kernel_size: int = 3,
|
892 | 892 | mlp_ratio: float = 4.0,
|
893 |
| - act_layer: nn.Module = nn.GELU, |
| 893 | + act_layer: Type[nn.Module] = nn.GELU, |
894 | 894 | proj_drop: float = 0.0,
|
895 | 895 | drop_path: float = 0.0,
|
896 | 896 | layer_scale_init_value: float = 1e-5,
|
@@ -947,8 +947,8 @@ def __init__(
|
947 | 947 | self,
|
948 | 948 | dim: int,
|
949 | 949 | mlp_ratio: float = 4.0,
|
950 |
| - act_layer: nn.Module = nn.GELU, |
951 |
| - norm_layer: nn.Module = nn.BatchNorm2d, |
| 950 | + act_layer: Type[nn.Module] = nn.GELU, |
| 951 | + norm_layer: Type[nn.Module] = nn.BatchNorm2d, |
952 | 952 | proj_drop: float = 0.0,
|
953 | 953 | drop_path: float = 0.0,
|
954 | 954 | layer_scale_init_value: float = 1e-5,
|
@@ -1007,8 +1007,8 @@ def __init__(
|
1007 | 1007 | pos_emb_layer: Optional[nn.Module] = None,
|
1008 | 1008 | kernel_size: int = 3,
|
1009 | 1009 | mlp_ratio: float = 4.0,
|
1010 |
| - act_layer: nn.Module = nn.GELU, |
1011 |
| - norm_layer: nn.Module = nn.BatchNorm2d, |
| 1010 | + act_layer: Type[nn.Module] = nn.GELU, |
| 1011 | + norm_layer: Type[nn.Module] = nn.BatchNorm2d, |
1012 | 1012 | proj_drop_rate: float = 0.0,
|
1013 | 1013 | drop_path_rate: float = 0.0,
|
1014 | 1014 | layer_scale_init_value: Optional[float] = 1e-5,
|
@@ -1121,8 +1121,8 @@ def __init__(
|
1121 | 1121 | fork_feat: bool = False,
|
1122 | 1122 | cls_ratio: float = 2.0,
|
1123 | 1123 | global_pool: str = 'avg',
|
1124 |
| - norm_layer: nn.Module = nn.BatchNorm2d, |
1125 |
| - act_layer: nn.Module = nn.GELU, |
| 1124 | + norm_layer: Type[nn.Module] = nn.BatchNorm2d, |
| 1125 | + act_layer: Type[nn.Module] = nn.GELU, |
1126 | 1126 | inference_mode: bool = False,
|
1127 | 1127 | ) -> None:
|
1128 | 1128 | super().__init__()
|
|
0 commit comments