-
Notifications
You must be signed in to change notification settings - Fork 27k
/
modeling_test.py
321 lines (271 loc) · 13.8 KB
/
modeling_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import unittest
import json
import random
import shutil
import pytest
import torch
from pytorch_pretrained_bert import (BertConfig, BertModel, BertForMaskedLM,
BertForNextSentencePrediction, BertForPreTraining,
BertForQuestionAnswering, BertForSequenceClassification,
BertForTokenClassification)
from pytorch_pretrained_bert.modeling import PRETRAINED_MODEL_ARCHIVE_MAP
class BertModelTest(unittest.TestCase):
class BertModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = BertModelTest.ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
if self.use_labels:
sequence_labels = BertModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.num_labels)
config = BertConfig(
vocab_size_or_config_json_file=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels
def check_loss_output(self, result):
self.parent.assertListEqual(
list(result["loss"].size()),
[])
def create_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertModel(config=config)
model.eval()
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
outputs = {
"sequence_output": all_encoder_layers[-1],
"pooled_output": pooled_output,
"all_encoder_layers": all_encoder_layers,
}
return outputs
def check_bert_model_output(self, result):
self.parent.assertListEqual(
[size for layer in result["all_encoder_layers"] for size in layer.size()],
[self.batch_size, self.seq_length, self.hidden_size] * self.num_hidden_layers)
self.parent.assertListEqual(
list(result["sequence_output"].size()),
[self.batch_size, self.seq_length, self.hidden_size])
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
def create_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForMaskedLM(config=config)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, token_labels)
prediction_scores = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"prediction_scores": prediction_scores,
}
return outputs
def check_bert_for_masked_lm_output(self, result):
self.parent.assertListEqual(
list(result["prediction_scores"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
def create_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForNextSentencePrediction(config=config)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, sequence_labels)
seq_relationship_score = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"seq_relationship_score": seq_relationship_score,
}
return outputs
def check_bert_for_next_sequence_prediction_output(self, result):
self.parent.assertListEqual(
list(result["seq_relationship_score"].size()),
[self.batch_size, 2])
def create_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForPreTraining(config=config)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, token_labels, sequence_labels)
prediction_scores, seq_relationship_score = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"prediction_scores": prediction_scores,
"seq_relationship_score": seq_relationship_score,
}
return outputs
def check_bert_for_pretraining_output(self, result):
self.parent.assertListEqual(
list(result["prediction_scores"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(result["seq_relationship_score"].size()),
[self.batch_size, 2])
def create_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForQuestionAnswering(config=config)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, sequence_labels, sequence_labels)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
return outputs
def check_bert_for_question_answering_output(self, result):
self.parent.assertListEqual(
list(result["start_logits"].size()),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["end_logits"].size()),
[self.batch_size, self.seq_length])
def create_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForSequenceClassification(config=config, num_labels=self.num_labels)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, sequence_labels)
logits = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"logits": logits,
}
return outputs
def check_bert_for_sequence_classification_output(self, result):
self.parent.assertListEqual(
list(result["logits"].size()),
[self.batch_size, self.num_labels])
def create_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForTokenClassification(config=config, num_labels=self.num_labels)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, token_labels)
logits = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"logits": logits,
}
return outputs
def check_bert_for_token_classification_output(self, result):
self.parent.assertListEqual(
list(result["logits"].size()),
[self.batch_size, self.seq_length, self.num_labels])
def test_default(self):
self.run_tester(BertModelTest.BertModelTester(self))
def test_config_to_json_string(self):
config = BertConfig(vocab_size_or_config_json_file=99, hidden_size=37)
obj = json.loads(config.to_json_string())
self.assertEqual(obj["vocab_size"], 99)
self.assertEqual(obj["hidden_size"], 37)
def test_config_to_json_file(self):
config_first = BertConfig(vocab_size_or_config_json_file=99, hidden_size=37)
json_file_path = "/tmp/config.json"
config_first.to_json_file(json_file_path)
config_second = BertConfig.from_json_file(json_file_path)
os.remove(json_file_path)
self.assertEqual(config_second.to_dict(), config_first.to_dict())
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_pretrained_bert_test/"
for model_name in list(PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = BertModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model)
def run_tester(self, tester):
config_and_inputs = tester.prepare_config_and_inputs()
output_result = tester.create_bert_model(*config_and_inputs)
tester.check_bert_model_output(output_result)
output_result = tester.create_bert_for_masked_lm(*config_and_inputs)
tester.check_bert_for_masked_lm_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_next_sequence_prediction(*config_and_inputs)
tester.check_bert_for_next_sequence_prediction_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_pretraining(*config_and_inputs)
tester.check_bert_for_pretraining_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_question_answering(*config_and_inputs)
tester.check_bert_for_question_answering_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_sequence_classification(*config_and_inputs)
tester.check_bert_for_sequence_classification_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_token_classification(*config_and_inputs)
tester.check_bert_for_token_classification_output(output_result)
tester.check_loss_output(output_result)
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
if __name__ == "__main__":
unittest.main()