1515from  collections .abc  import  Iterable 
1616from  copy  import  deepcopy 
1717from  functools  import  lru_cache , partial 
18- from  typing  import  Any , Optional , TypedDict ,  Union 
18+ from  typing  import  Any , Optional , Union 
1919
2020import  numpy  as  np 
2121
4040    validate_kwargs ,
4141    validate_preprocess_arguments ,
4242)
43- from  .processing_utils  import  Unpack 
43+ from  .processing_utils  import  ImagesKwargs ,  Unpack 
4444from  .utils  import  (
4545    TensorType ,
4646    auto_docstring ,
@@ -165,28 +165,6 @@ def divide_to_patches(
165165    return  patches 
166166
167167
168- class  DefaultFastImageProcessorKwargs (TypedDict , total = False ):
169-     do_resize : Optional [bool ]
170-     size : Optional [dict [str , int ]]
171-     default_to_square : Optional [bool ]
172-     resample : Optional [Union ["PILImageResampling" , "F.InterpolationMode" ]]
173-     do_center_crop : Optional [bool ]
174-     crop_size : Optional [dict [str , int ]]
175-     do_rescale : Optional [bool ]
176-     rescale_factor : Optional [Union [int , float ]]
177-     do_normalize : Optional [bool ]
178-     image_mean : Optional [Union [float , list [float ]]]
179-     image_std : Optional [Union [float , list [float ]]]
180-     do_pad : Optional [bool ]
181-     pad_size : Optional [dict [str , int ]]
182-     do_convert_rgb : Optional [bool ]
183-     return_tensors : Optional [Union [str , TensorType ]]
184-     data_format : Optional [ChannelDimension ]
185-     input_data_format : Optional [Union [str , ChannelDimension ]]
186-     device : Optional ["torch.device" ]
187-     disable_grouping : Optional [bool ]
188- 
189- 
190168@auto_docstring  
191169class  BaseImageProcessorFast (BaseImageProcessor ):
192170    resample  =  None 
@@ -208,10 +186,10 @@ class BaseImageProcessorFast(BaseImageProcessor):
208186    input_data_format  =  None 
209187    device  =  None 
210188    model_input_names  =  ["pixel_values" ]
211-     valid_kwargs  =  DefaultFastImageProcessorKwargs 
189+     valid_kwargs  =  ImagesKwargs 
212190    unused_kwargs  =  None 
213191
214-     def  __init__ (self , ** kwargs : Unpack [DefaultFastImageProcessorKwargs ]):
192+     def  __init__ (self , ** kwargs : Unpack [ImagesKwargs ]):
215193        super ().__init__ (** kwargs )
216194        kwargs  =  self .filter_out_unused_kwargs (kwargs )
217195        size  =  kwargs .pop ("size" , self .size )
@@ -730,11 +708,8 @@ def _validate_preprocess_kwargs(
730708            data_format = data_format ,
731709        )
732710
733-     def  __call__ (self , images : ImageInput , * args , ** kwargs : Unpack [DefaultFastImageProcessorKwargs ]) ->  BatchFeature :
734-         return  self .preprocess (images , * args , ** kwargs )
735- 
736711    @auto_docstring  
737-     def  preprocess (self , images : ImageInput , * args , ** kwargs : Unpack [DefaultFastImageProcessorKwargs ]) ->  BatchFeature :
712+     def  preprocess (self , images : ImageInput , * args , ** kwargs : Unpack [ImagesKwargs ]) ->  BatchFeature :
738713        # args are not validated, but their order in the `preprocess` and `_preprocess` signatures must be the same 
739714        validate_kwargs (captured_kwargs = kwargs .keys (), valid_processor_keys = self ._valid_kwargs_names )
740715        # Set default kwargs from self. This ensures that if a kwarg is not provided 
@@ -767,7 +742,7 @@ def _preprocess_image_like_inputs(
767742        do_convert_rgb : bool ,
768743        input_data_format : ChannelDimension ,
769744        device : Optional [Union [str , "torch.device" ]] =  None ,
770-         ** kwargs : Unpack [DefaultFastImageProcessorKwargs ],
745+         ** kwargs : Unpack [ImagesKwargs ],
771746    ) ->  BatchFeature :
772747        """ 
773748        Preprocess image-like inputs. 
0 commit comments