|
| 1 | +# Copyright 2020-2025 The HuggingFace Team. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | + |
| 16 | +from datasets import load_dataset |
| 17 | +from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, Trainer, TrainingArguments |
| 18 | +from transformers.utils import is_peft_available |
| 19 | + |
| 20 | +from trl.experimental.judges import BasePairwiseJudge |
| 21 | +from trl.experimental.winrate_callback import WinRateCallback |
| 22 | + |
| 23 | +from ..testing_utils import TrlTestCase, require_peft |
| 24 | + |
| 25 | + |
| 26 | +if is_peft_available(): |
| 27 | + from peft import LoraConfig |
| 28 | + |
| 29 | + |
| 30 | +class HalfPairwiseJudge(BasePairwiseJudge): |
| 31 | + """Naive pairwise judge that always returns [1, 0] for two prompts""" |
| 32 | + |
| 33 | + def judge(self, prompts, completions, shuffle_order=True, return_scores=False): |
| 34 | + # just check that the batch size is 2 |
| 35 | + assert len(prompts) == 2 |
| 36 | + if return_scores: |
| 37 | + return [0.3, 0.9] |
| 38 | + return [1, 0] |
| 39 | + |
| 40 | + |
| 41 | +class TrainerWithRefModel(Trainer): |
| 42 | + # This is a dummy class to test the callback. Compared to the Trainer class, it only has an additional |
| 43 | + # ref_model attribute |
| 44 | + def __init__(self, model, ref_model, args, train_dataset, eval_dataset, processing_class): |
| 45 | + super().__init__( |
| 46 | + model=model, |
| 47 | + args=args, |
| 48 | + train_dataset=train_dataset, |
| 49 | + eval_dataset=eval_dataset, |
| 50 | + processing_class=processing_class, |
| 51 | + ) |
| 52 | + self.ref_model = ref_model |
| 53 | + |
| 54 | + |
| 55 | +class TestWinRateCallback(TrlTestCase): |
| 56 | + def setup_method(self): |
| 57 | + self.model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") |
| 58 | + self.ref_model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") |
| 59 | + self.tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") |
| 60 | + self.tokenizer.pad_token = self.tokenizer.eos_token |
| 61 | + dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") |
| 62 | + dataset["train"] = dataset["train"].select(range(8)) |
| 63 | + self.expected_winrates = [ |
| 64 | + {"eval_win_rate": 0.5, "epoch": 0.0, "step": 0}, |
| 65 | + {"eval_win_rate": 0.5, "epoch": 0.5, "step": 2}, |
| 66 | + {"eval_win_rate": 0.5, "epoch": 1.0, "step": 4}, |
| 67 | + {"eval_win_rate": 0.5, "epoch": 1.5, "step": 6}, |
| 68 | + {"eval_win_rate": 0.5, "epoch": 2.0, "step": 8}, |
| 69 | + {"eval_win_rate": 0.5, "epoch": 2.5, "step": 10}, |
| 70 | + {"eval_win_rate": 0.5, "epoch": 3.0, "step": 12}, |
| 71 | + ] |
| 72 | + |
| 73 | + def tokenize_function(examples): |
| 74 | + out = self.tokenizer(examples["prompt"], padding="max_length", max_length=16, truncation=True) |
| 75 | + out["labels"] = out["input_ids"].copy() |
| 76 | + return out |
| 77 | + |
| 78 | + self.dataset = dataset.map(tokenize_function, batched=True) |
| 79 | + |
| 80 | + self.generation_config = GenerationConfig(max_length=32) |
| 81 | + self.judge = HalfPairwiseJudge() |
| 82 | + |
| 83 | + def test_basic(self): |
| 84 | + training_args = TrainingArguments( |
| 85 | + output_dir=self.tmp_dir, |
| 86 | + eval_strategy="steps", |
| 87 | + eval_steps=2, # evaluate every 2 steps |
| 88 | + per_device_train_batch_size=2, # 8 samples in total so 4 batches of 2 per epoch |
| 89 | + per_device_eval_batch_size=2, |
| 90 | + report_to="none", |
| 91 | + ) |
| 92 | + trainer = TrainerWithRefModel( |
| 93 | + model=self.model, |
| 94 | + ref_model=self.ref_model, |
| 95 | + args=training_args, |
| 96 | + train_dataset=self.dataset["train"], |
| 97 | + eval_dataset=self.dataset["test"], |
| 98 | + processing_class=self.tokenizer, |
| 99 | + ) |
| 100 | + win_rate_callback = WinRateCallback( |
| 101 | + judge=self.judge, trainer=trainer, generation_config=self.generation_config |
| 102 | + ) |
| 103 | + trainer.add_callback(win_rate_callback) |
| 104 | + trainer.train() |
| 105 | + winrate_history = [h for h in trainer.state.log_history if "eval_win_rate" in h] |
| 106 | + for history_row, expected_row in zip(winrate_history, self.expected_winrates, strict=True): |
| 107 | + assert all(key in history_row and history_row[key] == expected_row[key] for key in expected_row) |
| 108 | + |
| 109 | + def test_without_ref_model(self): |
| 110 | + # Same as before, but without the ref_model attribute. It should use the model attribute instead |
| 111 | + training_args = TrainingArguments( |
| 112 | + output_dir=self.tmp_dir, |
| 113 | + eval_strategy="steps", |
| 114 | + eval_steps=2, # evaluate every 2 steps |
| 115 | + per_device_train_batch_size=2, # 8 samples in total so 4 batches of 2 per epoch |
| 116 | + per_device_eval_batch_size=2, |
| 117 | + report_to="none", |
| 118 | + ) |
| 119 | + trainer = Trainer( |
| 120 | + model=self.model, |
| 121 | + args=training_args, |
| 122 | + train_dataset=self.dataset["train"], |
| 123 | + eval_dataset=self.dataset["test"], |
| 124 | + processing_class=self.tokenizer, |
| 125 | + ) |
| 126 | + win_rate_callback = WinRateCallback( |
| 127 | + judge=self.judge, trainer=trainer, generation_config=self.generation_config |
| 128 | + ) |
| 129 | + trainer.add_callback(win_rate_callback) |
| 130 | + trainer.train() |
| 131 | + winrate_history = [h for h in trainer.state.log_history if "eval_win_rate" in h] |
| 132 | + for history_row, expected_row in zip(winrate_history, self.expected_winrates, strict=True): |
| 133 | + assert all(key in history_row and history_row[key] == expected_row[key] for key in expected_row) |
| 134 | + |
| 135 | + def test_soft_judge(self): |
| 136 | + """Test that the soft judge functionality works correctly""" |
| 137 | + training_args = TrainingArguments( |
| 138 | + output_dir=self.tmp_dir, |
| 139 | + eval_strategy="steps", |
| 140 | + eval_steps=2, # evaluate every 2 steps |
| 141 | + per_device_train_batch_size=2, # 8 samples in total so 4 batches of 2 per epoch |
| 142 | + per_device_eval_batch_size=2, |
| 143 | + report_to="none", |
| 144 | + ) |
| 145 | + trainer = TrainerWithRefModel( |
| 146 | + model=self.model, |
| 147 | + ref_model=self.ref_model, |
| 148 | + args=training_args, |
| 149 | + train_dataset=self.dataset["train"], |
| 150 | + eval_dataset=self.dataset["test"], |
| 151 | + processing_class=self.tokenizer, |
| 152 | + ) |
| 153 | + win_rate_callback = WinRateCallback( |
| 154 | + judge=self.judge, trainer=trainer, generation_config=self.generation_config, use_soft_judge=True |
| 155 | + ) |
| 156 | + trainer.add_callback(win_rate_callback) |
| 157 | + trainer.train() |
| 158 | + |
| 159 | + # Expected values based on judge returning [0.3, 0.9] for each pair |
| 160 | + expected_soft_winrates = [ |
| 161 | + {"eval_avg_win_prob": 0.4, "eval_win_rate": 0.5, "epoch": 0.0, "step": 0}, |
| 162 | + {"eval_avg_win_prob": 0.4, "eval_win_rate": 0.5, "epoch": 0.5, "step": 2}, |
| 163 | + {"eval_avg_win_prob": 0.4, "eval_win_rate": 0.5, "epoch": 1.0, "step": 4}, |
| 164 | + {"eval_avg_win_prob": 0.4, "eval_win_rate": 0.5, "epoch": 1.5, "step": 6}, |
| 165 | + {"eval_avg_win_prob": 0.4, "eval_win_rate": 0.5, "epoch": 2.0, "step": 8}, |
| 166 | + {"eval_avg_win_prob": 0.4, "eval_win_rate": 0.5, "epoch": 2.5, "step": 10}, |
| 167 | + {"eval_avg_win_prob": 0.4, "eval_win_rate": 0.5, "epoch": 3.0, "step": 12}, |
| 168 | + ] |
| 169 | + |
| 170 | + winrate_history = [ |
| 171 | + {k: h[k] for k in ["eval_avg_win_prob", "eval_win_rate", "epoch", "step"]} |
| 172 | + for h in trainer.state.log_history |
| 173 | + if "eval_avg_win_prob" in h |
| 174 | + ] |
| 175 | + for history_row, expected_row in zip(winrate_history, expected_soft_winrates, strict=True): |
| 176 | + assert all(key in history_row and history_row[key] == expected_row[key] for key in expected_row) |
| 177 | + |
| 178 | + @require_peft |
| 179 | + def test_lora(self): |
| 180 | + peft_config = LoraConfig( |
| 181 | + r=16, |
| 182 | + lora_alpha=32, |
| 183 | + lora_dropout=0.05, |
| 184 | + bias="none", |
| 185 | + task_type="CAUSAL_LM", |
| 186 | + ) |
| 187 | + self.model.add_adapter(peft_config) |
| 188 | + training_args = TrainingArguments( |
| 189 | + output_dir=self.tmp_dir, |
| 190 | + eval_strategy="steps", |
| 191 | + eval_steps=2, # evaluate every 2 steps |
| 192 | + per_device_train_batch_size=2, # 8 samples in total so 4 batches of 2 per epoch |
| 193 | + per_device_eval_batch_size=2, |
| 194 | + report_to="none", |
| 195 | + ) |
| 196 | + trainer = Trainer( |
| 197 | + model=self.model, |
| 198 | + args=training_args, |
| 199 | + train_dataset=self.dataset["train"], |
| 200 | + eval_dataset=self.dataset["test"], |
| 201 | + processing_class=self.tokenizer, |
| 202 | + ) |
| 203 | + win_rate_callback = WinRateCallback( |
| 204 | + judge=self.judge, trainer=trainer, generation_config=self.generation_config |
| 205 | + ) |
| 206 | + trainer.add_callback(win_rate_callback) |
| 207 | + trainer.train() |
| 208 | + winrate_history = [h for h in trainer.state.log_history if "eval_win_rate" in h] |
| 209 | + for history_row, expected_row in zip(winrate_history, self.expected_winrates, strict=True): |
| 210 | + assert all(key in history_row and history_row[key] == expected_row[key] for key in expected_row) |
0 commit comments