A PyTorch prototype for Difference-of-Convex Privacy Funnel
Accepted for ISIT 2024 Learn to compress workshop
Cite the work if you find it useful
@article{huang2024efficient,
title={An efficient difference-of-convex solver for privacy funnel},
author={Huang, Teng-Hui and Gamal, Hesham El},
journal={arXiv preprint arXiv:2403.04778},
year={2024}
}
The source code implements a differnce-of-convex solver for the privacy funnel The algorithm is implemented with a neural network. It is a supervised learning algorithm.
- python == 3.7.12
- PyTorch == 1.11.0
- torchvision == 0.12.0
- umap-learn == 0.5.3
- pandas == 1.3.5
- scikit-learn == 1.0.2
- scipy == 1.7.3
- matplotlib == 3.5.3
- cvxpy == 1.5.2
conda env create -f environment.yml
python train_rt.py mnist
python train_rt.py fashion
python load_test.py path/to/model.pth
Teng-Hui Huang
Electrical and Computer Engineering
University of Sydney, NSW, Australia
email: tenghui[DOT]huang@sydney[DOT]edu[DOT]au