forked from mikelzc1990/nsganetv2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cifar.py
313 lines (242 loc) · 11.4 KB
/
train_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import sys
import json
import copy
import logging
import argparse
import numpy as np
from datetime import datetime
import torch
import torch.nn as nn
import torchvision.utils
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as transforms
from codebase.data_providers.autoaugment import CIFAR10Policy
from evaluator import OFAEvaluator
from torchprofile import profile_macs
from codebase.networks import NSGANetV2
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument('--data', type=str, default='../data', help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='cifar10', help='cifar10, cifar100, or cinic10')
parser.add_argument('--batch-size', type=int, default=96, help='batch size')
parser.add_argument('--num_workers', type=int, default=2, help='number of workers for data loading')
parser.add_argument('--n_gpus', type=int, default=1, help='number of available gpus for training')
parser.add_argument('--lr', type=float, default=0.01, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=4e-5, help='weight decay')
parser.add_argument('--report_freq', type=float, default=50, help='report frequency')
parser.add_argument('--epochs', type=int, default=150, help='num of training epochs')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument('--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--autoaugment', action='store_true', default=False, help='use auto augmentation')
parser.add_argument('--save', action='store_true', default=False, help='dump output')
parser.add_argument('--topk', type=int, default=10, help='top k checkpoints to save')
parser.add_argument('--evaluate', action='store_true', default=False, help='evaluate a pretrained model')
# model related
parser.add_argument('--model', default='resnet101', type=str, metavar='MODEL',
help='Name of model to train (default: "countception"')
parser.add_argument('--model-config', type=str, default=None,
help='location of a json file of specific model declaration')
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
help='Initialize model from this checkpoint (default: none)')
parser.add_argument('--drop', type=float, default=0.2,
help='dropout rate')
parser.add_argument('--drop-path', type=float, default=0.2, metavar='PCT',
help='Drop path rate (default: None)')
parser.add_argument('--img-size', type=int, default=224,
help='input resolution (192 -> 256)')
args = parser.parse_args()
dataset = args.dataset
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
if args.save:
args.save = '-'.join([
datetime.now().strftime("%Y%m%d-%H%M%S"),
args.dataset,
args.model,
str(args.img_size)
])
if not os.path.exists(args.save):
os.makedirs(args.save, exist_ok=True)
print('Experiment dir : {}'.format(args.save))
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
device = 'cuda'
NUM_CLASSES = 100 if 'cifar100' in dataset else 10
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
logging.info("args = %s", args)
if args.seed is not None:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
best_acc = 0 # initiate a artificial best accuracy so far
top_checkpoints = [] # initiate a list to keep track of
# Data
train_transform, valid_transform = _data_transforms(args)
if dataset == 'cifar100':
train_data = torchvision.datasets.CIFAR100(
root=args.data, train=True, download=True, transform=train_transform)
valid_data = torchvision.datasets.CIFAR100(
root=args.data, train=False, download=True, transform=valid_transform)
elif dataset == 'cifar10':
train_data = torchvision.datasets.CIFAR10(
root=args.data, train=True, download=True, transform=train_transform)
valid_data = torchvision.datasets.CIFAR10(
root=args.data, train=False, download=True, transform=valid_transform)
elif dataset == 'cinic10':
train_data = torchvision.datasets.ImageFolder(
args.data + 'train_and_valid', transform=train_transform)
valid_data = torchvision.datasets.ImageFolder(
args.data + 'test', transform=valid_transform)
else:
raise KeyError
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.num_workers)
valid_queue = torch.utils.data.DataLoader(
valid_data, batch_size=200, shuffle=False, pin_memory=True, num_workers=args.num_workers)
net_config = json.load(open(args.model_config))
net = NSGANetV2.build_from_config(net_config, drop_connect_rate=args.drop_path)
init = torch.load(args.initial_checkpoint, map_location='cpu')['state_dict']
net.load_state_dict(init)
NSGANetV2.reset_classifier(
net, last_channel=net.classifier.in_features,
n_classes=NUM_CLASSES, dropout_rate=args.drop)
# calculate #Paramaters and #FLOPS
inputs = torch.randn(1, 3, args.img_size, args.img_size)
flops = profile_macs(copy.deepcopy(net), inputs) / 1e6
params = sum(p.numel() for p in net.parameters() if p.requires_grad) / 1e6
net_name = "net_flops@{:.0f}".format(flops)
logging.info('#params {:.2f}M, #flops {:.0f}M'.format(params, flops))
if args.n_gpus > 1:
net = nn.DataParallel(net) # data parallel in case more than 1 gpu available
net = net.to(device)
n_epochs = args.epochs
parameters = filter(lambda p: p.requires_grad, net.parameters())
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.SGD(parameters,
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, n_epochs)
if args.evaluate:
infer(valid_queue, net, criterion)
sys.exit(0)
for epoch in range(n_epochs):
logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
train(train_queue, net, criterion, optimizer)
_, valid_acc = infer(valid_queue, net, criterion)
# checkpoint saving
if args.save:
if len(top_checkpoints) < args.topk:
OFAEvaluator.save_net(args.save, net, net_name+'.ckpt{}'.format(epoch))
top_checkpoints.append((os.path.join(args.save, net_name+'.ckpt{}'.format(epoch)), valid_acc))
else:
idx = np.argmin([x[1] for x in top_checkpoints])
if valid_acc > top_checkpoints[idx][1]:
OFAEvaluator.save_net(args.save, net, net_name + '.ckpt{}'.format(epoch))
top_checkpoints.append((os.path.join(args.save, net_name+'.ckpt{}'.format(epoch)), valid_acc))
# remove the idx
os.remove(top_checkpoints[idx][0])
top_checkpoints.pop(idx)
print(top_checkpoints)
if valid_acc > best_acc:
OFAEvaluator.save_net(args.save, net, net_name + '.best')
best_acc = valid_acc
scheduler.step()
OFAEvaluator.save_net_config(args.save, net, net_name+'.config')
# Training
def train(train_queue, net, criterion, optimizer):
net.train()
train_loss = 0
correct = 0
total = 0
for step, (inputs, targets) in enumerate(train_queue):
# upsample by bicubic to match imagenet training size
inputs = F.interpolate(inputs, size=args.img_size, mode='bicubic', align_corners=False)
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
nn.utils.clip_grad_norm_(net.parameters(), args.grad_clip)
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if step % args.report_freq == 0:
logging.info('train %03d %e %f', step, train_loss/total, 100.*correct/total)
logging.info('train acc %f', 100. * correct / total)
return train_loss/total, 100.*correct/total
def infer(valid_queue, net, criterion):
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for step, (inputs, targets) in enumerate(valid_queue):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if step % args.report_freq == 0:
logging.info('valid %03d %e %f', step, test_loss/total, 100.*correct/total)
acc = 100.*correct/total
logging.info('valid acc %f', 100. * correct / total)
return test_loss/total, acc
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def _data_transforms(args):
if 'cifar' in args.dataset:
norm_mean = [0.49139968, 0.48215827, 0.44653124]
norm_std = [0.24703233, 0.24348505, 0.26158768]
elif 'cinic' in args.dataset:
norm_mean = [0.47889522, 0.47227842, 0.43047404]
norm_std = [0.24205776, 0.23828046, 0.25874835]
else:
raise KeyError
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
# transforms.Resize(224, interpolation=3), # BICUBIC interpolation
transforms.RandomHorizontalFlip(),
])
if args.autoaugment:
train_transform.transforms.append(CIFAR10Policy())
train_transform.transforms.append(transforms.ToTensor())
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
train_transform.transforms.append(transforms.Normalize(norm_mean, norm_std))
valid_transform = transforms.Compose([
transforms.Resize(args.img_size, interpolation=3), # BICUBIC interpolation
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
return train_transform, valid_transform
if __name__ == '__main__':
main()