Skip to content

Latest commit

 

History

History
37 lines (26 loc) · 1.05 KB

README.md

File metadata and controls

37 lines (26 loc) · 1.05 KB

ALSTP

A pytorch and tensorflow GPU implementation of ALSTP.

Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Yinglong Wang, Junma and Mohan Kankanhalli (2018). Attentive Long Short-Term Preference Modeling for Personalized Product Search. In TOIS.

Please cite our TOIS paper if you use our codes. Thanks!

Please download the Amazon Dataset from http://jmcauley.ucsd.edu/data/amazon.

Setup:

python 3.5

pytorch 0.4.0

tensorflow 1.7

Requirements

  1. Make sure the raw data, stopwords data are in the same direction.
  2. Preprocessing data. Filter the review to each user having at least 10 transactions. Remove the words whose number is less than "count". Split the data into three sets and extract queries.
    python extract.py --review_file --meta_file --count
    
  3. We leverage the PV-DM model to convert queries and product representations to the same latent space.
    python doc2vec.py --dataset --embedding_size --window_size
    
  4. Now start training our model.
    python main.py --dataset --lr --num_steps --alpha