-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlap_deform.py
executable file
·237 lines (204 loc) · 9.74 KB
/
lap_deform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
import pytorch3d.ops
from utils.arap_deform import ARAPDeformer
from utils.deform_utils import cal_arap_error
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
def quaternion_raw_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
aw, ax, ay, az = torch.unbind(a, -1)
bw, bx, by, bz = torch.unbind(b, -1)
ow = aw * bw - ax * bx - ay * by - az * bz
ox = aw * bx + ax * bw + ay * bz - az * by
oy = aw * by - ax * bz + ay * bw + az * bx
oz = aw * bz + ax * by - ay * bx + az * bw
return torch.stack((ow, ox, oy, oz), -1)
def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
ab = quaternion_raw_multiply(a, b)
return standardize_quaternion(ab)
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
torch.nn.functional.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
class LapDeform(nn.Module):
def __init__(self, init_pcl, K=4, trajectory=None, node_radius=None):
super().__init__()
self.K = K
self.N = init_pcl.shape[0]
nn_dist, nn_idxs, _ = pytorch3d.ops.knn_points(init_pcl[None], init_pcl[None], None, None, K=K+1) # N, K
nn_dist, nn_idxs = nn_dist[0,:,1:], nn_idxs[0,:,1:]
nn_dist = 1 / (nn_dist + 1e-7)
self.nn_idxs = nn_idxs
self._weight = nn.Parameter(torch.log(nn_dist / (nn_dist.sum(dim=1, keepdim=True) + 1e-5) + 1e-5))
self.init_pcl = init_pcl
self.init_pcl_copy = init_pcl.clone()
self.tensors = {}
# self.optimizer = torch.optim.Adam([self._weight], lr=1e-5)
self.mask_control_points = False
if self.mask_control_points:
self.generate_mask_init_pcl()
radius = torch.linalg.norm(self.init_pcl_reduced.max(dim=0).values - self.init_pcl_reduced.min(dim=0).values) / 10 * 3
print("Set ball query radius to %f" % radius.item())
self.arap_deformer = ARAPDeformer(self.init_pcl_reduced, radius=radius, K=30, point_mask=self.init_pcl_mask, trajectory=trajectory, node_radius=node_radius)
else:
radius = torch.linalg.norm(self.init_pcl.max(dim=0).values - self.init_pcl.min(dim=0).values) / 8
print("Set ball query radius to %f" % radius.item())
self.arap_deformer = ARAPDeformer(init_pcl, radius=radius, K=16, trajectory=trajectory, node_radius=node_radius)
self.optimizer = torch.optim.Adam([self.arap_deformer.weight], lr=1e-3)
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=100, gamma=0.99)
self.optim_step = 0
def generate_mask_init_pcl(self):
init_pcl_mask = torch.linalg.norm(self.init_pcl, dim=-1) < 5
self.init_pcl_mask = init_pcl_mask
# init_pcl[~init_pcl_mask] = 0
self.init_pcl_reduced = self.init_pcl[self.init_pcl_mask]
def reset(self, ):
self.init_pcl = self.init_pcl_copy.clone()
self.arap_deformer.reset()
self.optim_step = 0
self.generate_mask_init_pcl()
@property
def weight(self):
return torch.softmax(self._weight, dim=-1)
@property
def L(self):
L = torch.eye(self.N).cuda()
L.scatter_add_(dim=1, index=self.nn_idxs, src=-self.weight)
return L
def add_one_ring_nbs(self, idxs):
if type(idxs) is list:
idxs = torch.tensor(idxs).cuda()
elif idxs.dim() == 0:
idxs = idxs[None]
nn_idxs = self.nn_idxs[idxs].reshape([-1])
return torch.unique(torch.cat([nn_idxs, idxs]))
def add_n_ring_nbs(self, idxs, n=2):
for i in range(n):
idxs = self.add_one_ring_nbs(idxs)
return idxs
def initialize(self, pcl):
b = self.L @ pcl
self.tensors['b'] = b
def estimate_R(self, pcl, return_quaternion=True):
old_edges = torch.gather(input=self.init_pcl[:, None].repeat(1,self.K,1), dim=0, index=self.nn_idxs[..., None].repeat(1,1,3)) - self.init_pcl[:, None] # N, K, 3
edges = torch.gather(input=pcl[:, None].repeat(1,self.K,1), dim=0, index=self.nn_idxs[..., None].repeat(1,1,3)) - pcl[:, None] # N, K, 3
D = torch.diag_embed(self.weight, dim1=1, dim2=2) # N, K, K
S = torch.bmm(old_edges.permute(0, 2, 1), torch.bmm(D, edges)) # N, 3, 3
unchanged = torch.unique(torch.where((edges == old_edges).all(dim=1))[0])
S[unchanged] = 0
U, _, W = torch.svd(S)
R = torch.bmm(W, U.permute(0, 2, 1))
if return_quaternion:
q = matrix_to_quaternion(R)
return q
else:
return R
def energy(self, pcl, prev_pcl=None):
if prev_pcl is None:
if 'b' not in self.tensors:
print('Have not initialized yet and start with init pcl')
self.initialize(self.init_pcl)
b = self.tensors['b']
else:
b = self.L @ prev_pcl
loss = (self.L @ pcl - b).square().mean()
return loss
def energy_arap(self, pcl, prev_pcl):
# loss = (self.arap_deformer.L_opt @ pcl - b).square().mean()
self.optim_step += 1
self.arap_deformer.cal_L_opt()
node_seq = torch.stack([prev_pcl, pcl], dim=0)
# print(self.arap_deformer.weight)
loss = cal_arap_error(node_seq, self.arap_deformer.ii, self.arap_deformer.jj, self.arap_deformer.nn, K=self.arap_deformer.K, weight=self.arap_deformer.normalized_weight)
return loss
def deform(self, handle_idx, handle_pos, static_idx=None):
if 'b' not in self.tensors:
print('Have not initialized yet and start with init pcl')
self.initialize(self.init_pcl)
b = self.tensors['b']
handle_pos = torch.tensor(handle_pos).float().cuda()
if static_idx is not None:
static_pos = self.init_pcl[static_idx]
handle_idx = handle_idx + static_idx
handle_pos = torch.cat([handle_pos.cuda(), static_pos.cuda()], dim=0)
return lstsq_with_handles(A=self.L, b=b, handle_idx=handle_idx, handle_pos=handle_pos)
def deform_arap(self, handle_idx, handle_pos, init_verts=None, return_R=False):
handle_idx = torch.tensor(handle_idx).long().cuda()
if type(handle_pos) is not torch.Tensor:
handle_pos = torch.from_numpy(handle_pos).float().cuda()
deformed_p, deformed_r, deformed_s = self.arap_deformer.deform(handle_idx, handle_pos, init_verts=init_verts, return_R=return_R)
if self.mask_control_points:
deformed_p_all = self.init_pcl.clone()
deformed_p_all[self.init_pcl_mask] = deformed_p
deformed_r_all = torch.tensor([[1,0,0,0]]).to(deformed_r.dtype).to(deformed_r.device).repeat(deformed_p_all.shape[0],1)
deformed_r_all[self.init_pcl_mask] = deformed_r
return deformed_p_all, deformed_r_all, deformed_s
else:
return deformed_p, deformed_r, deformed_s
def lstsq_with_handles(A, b, handle_idx, handle_pos):
b = b - A[:, handle_idx] @ handle_pos
handle_mask = torch.zeros_like(A[:, 0], dtype=bool)
handle_mask[handle_idx] = 1
L = A[:, handle_mask.logical_not()]
x = torch.linalg.lstsq(L, b)[0]
x_out = torch.zeros_like(b)
x_out[handle_idx] = handle_pos
x_out[handle_mask.logical_not()] = x
return x_out