We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
老师您好!我想请问下:在原文中提到了KG可用来解决cold-start和data sparsity的问题,那么RippleNet-prop和RippleNet-agg能否解决冷启动的问题呢? 我个人的理解是这样,在原文的model中含有item/user embedding的参数待学习,在这种设定下是不能获得一个新item/user的参数的,因此无法解决冷启动;但是由于存在relation embedding/W,b这样的参数,model可能可以应用在user/item embedding提前给定好的场景中,这时不需要再训练embedding参数了,而是只训练relation/{W,b}这些参数,从而解决冷启动问题。不知道我这样的理解是否正确呢? 期待着您的回复!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
老师您好!我想请问下:在原文中提到了KG可用来解决cold-start和data sparsity的问题,那么RippleNet-prop和RippleNet-agg能否解决冷启动的问题呢?
我个人的理解是这样,在原文的model中含有item/user embedding的参数待学习,在这种设定下是不能获得一个新item/user的参数的,因此无法解决冷启动;但是由于存在relation embedding/W,b这样的参数,model可能可以应用在user/item embedding提前给定好的场景中,这时不需要再训练embedding参数了,而是只训练relation/{W,b}这些参数,从而解决冷启动问题。不知道我这样的理解是否正确呢?
期待着您的回复!
The text was updated successfully, but these errors were encountered: