-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdata.py
230 lines (192 loc) · 8.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import sys
import glob
import h5py
import numpy as np
from scipy.spatial.transform import Rotation
from torch.utils.data import Dataset
from sklearn.neighbors import NearestNeighbors
from scipy.spatial.distance import minkowski
# Part of the code is referred from: https://github.com/charlesq34/pointnet
def download():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
zipfile = os.path.basename(www)
os.system('wget %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))
def load_data(partition):
# download()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, '../../datasets')
all_data = []
all_label = []
for h5_name in glob.glob(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048', 'ply_data_%s*.h5' % partition)):
f = h5py.File(h5_name)
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2. / 3., high=3. / 2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.05):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1 * clip, clip)
return pointcloud
def farthest_subsample_points(pointcloud1, pointcloud2, num_subsampled_points=768):
pointcloud1 = pointcloud1.T
pointcloud2 = pointcloud2.T
num_points = pointcloud1.shape[0]
nbrs1 = NearestNeighbors(n_neighbors=num_subsampled_points, algorithm='auto',
metric=lambda x, y: minkowski(x, y), n_jobs=1).fit(pointcloud1)
random_p1 = np.random.random(size=(1, 3)) + np.array([[500, 500, 500]]) * np.random.choice([1, -1, 1, -1])
idx1 = nbrs1.kneighbors(random_p1, return_distance=False).reshape((num_subsampled_points,))
nbrs2 = NearestNeighbors(n_neighbors=num_subsampled_points, algorithm='auto',
metric=lambda x, y: minkowski(x, y), n_jobs=1).fit(pointcloud2)
random_p2 = random_p1 #np.random.random(size=(1, 3)) + np.array([[500, 500, 500]]) * np.random.choice([1, -1, 2, -2])
idx2 = nbrs2.kneighbors(random_p2, return_distance=False).reshape((num_subsampled_points,))
return pointcloud1[idx1, :].T, pointcloud2[idx2, :].T
class ModelNet40(Dataset):
def __init__(self, num_points, num_subsampled_points = 768, partition='train', gaussian_noise=False, unseen=False, factor=4):
self.data, self.label = load_data(partition)
self.num_points = num_points
self.partition = partition
self.gaussian_noise = gaussian_noise
self.unseen = unseen
self.label = self.label.squeeze()
self.factor = factor
self.num_subsampled_points = num_subsampled_points
if num_points != num_subsampled_points:
self.subsampled = True
else:
self.subsampled = False
if self.unseen:
######## simulate testing on first 20 categories while training on last 20 categories
if self.partition == 'test':
self.data = self.data[self.label>=20]
self.label = self.label[self.label>=20]
elif self.partition == 'train':
self.data = self.data[self.label<20]
self.label = self.label[self.label<20]
def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
# if self.gaussian_noise:
# pointcloud = jitter_pointcloud(pointcloud)
if self.partition != 'train':
np.random.seed(item)
anglex = np.random.uniform() * np.pi / self.factor
angley = np.random.uniform() * np.pi / self.factor
anglez = np.random.uniform() * np.pi / self.factor
cosx = np.cos(anglex)
cosy = np.cos(angley)
cosz = np.cos(anglez)
sinx = np.sin(anglex)
siny = np.sin(angley)
sinz = np.sin(anglez)
Rx = np.array([[1, 0, 0],
[0, cosx, -sinx],
[0, sinx, cosx]])
Ry = np.array([[cosy, 0, siny],
[0, 1, 0],
[-siny, 0, cosy]])
Rz = np.array([[cosz, -sinz, 0],
[sinz, cosz, 0],
[0, 0, 1]])
# 生成旋转矩阵
R_ab = Rx.dot(Ry).dot(Rz)
R_ba = R_ab.T
# 生成平移向量
translation_ab = np.array([np.random.uniform(-0.5, 0.5), np.random.uniform(-0.5, 0.5),
np.random.uniform(-0.5, 0.5)])
translation_ba = -R_ba.dot(translation_ab)
pointcloud1 = pointcloud.T
rotation_ab = Rotation.from_euler('zyx', [anglez, angley, anglex])
pointcloud2 = rotation_ab.apply(pointcloud1.T).T + np.expand_dims(translation_ab, axis=1)
euler_ab = np.asarray([anglez, angley, anglex])
euler_ba = -euler_ab[::-1]
pointcloud1 = np.random.permutation(pointcloud1.T).T
pointcloud2 = np.random.permutation(pointcloud2.T).T
if self.gaussian_noise:
pointcloud1 = jitter_pointcloud(pointcloud1)
pointcloud2 = jitter_pointcloud(pointcloud2)
if self.subsampled:
pointcloud1, pointcloud2 = farthest_subsample_points(pointcloud1, pointcloud2,
num_subsampled_points=self.num_subsampled_points)
return pointcloud1.astype('float32'), pointcloud2.astype('float32'), R_ab.astype('float32'), \
translation_ab.astype('float32'), R_ba.astype('float32'), translation_ba.astype('float32'), \
euler_ab.astype('float32'), euler_ba.astype('float32')
def __len__(self):
return self.data.shape[0]
class SceneflowDataset(Dataset):
def __init__(self, npoints=2048, root='data_preprocessing/data_processed_maxcut_35_both_mask_20k_2k', partition='train'):
self.npoints = npoints
self.partition = partition
self.root = root
if self.partition=='train':
self.datapath = glob.glob(os.path.join(self.root, 'TRAIN*.npz'))
else:
self.datapath = glob.glob(os.path.join(self.root, 'TEST*.npz'))
self.cache = {}
self.cache_size = 30000
###### deal with one bad datapoint with nan value
self.datapath = [d for d in self.datapath if 'TRAIN_C_0140_left_0006-0' not in d]
######
print(self.partition, ': ',len(self.datapath))
def __getitem__(self, index):
if index in self.cache:
pos1, pos2, color1, color2, flow, mask1 = self.cache[index]
else:
fn = self.datapath[index]
with open(fn, 'rb') as fp:
data = np.load(fp)
pos1 = data['points1'].astype('float32')
pos2 = data['points2'].astype('float32')
color1 = data['color1'].astype('float32')
color2 = data['color2'].astype('float32')
flow = data['flow'].astype('float32')
mask1 = data['valid_mask1']
if len(self.cache) < self.cache_size:
self.cache[index] = (pos1, pos2, color1, color2, flow, mask1)
if self.partition == 'train':
n1 = pos1.shape[0]
sample_idx1 = np.random.choice(n1, self.npoints, replace=False)
n2 = pos2.shape[0]
sample_idx2 = np.random.choice(n2, self.npoints, replace=False)
pos1 = pos1[sample_idx1, :]
pos2 = pos2[sample_idx2, :]
color1 = color1[sample_idx1, :]
color2 = color2[sample_idx2, :]
flow = flow[sample_idx1, :]
mask1 = mask1[sample_idx1]
else:
pos1 = pos1[:self.npoints, :]
pos2 = pos2[:self.npoints, :]
color1 = color1[:self.npoints, :]
color2 = color2[:self.npoints, :]
flow = flow[:self.npoints, :]
mask1 = mask1[:self.npoints]
pos1_center = np.mean(pos1, 0)
pos1 -= pos1_center
pos2 -= pos1_center
return pos1, pos2, color1, color2, flow, mask1
def __len__(self):
return len(self.datapath)
if __name__ == '__main__':
train = ModelNet40(1024)
test = ModelNet40(1024, 'test')
for data in train:
print(data[0].shape)
break