forked from hhj1897/face_alignment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_alignment_test.py
150 lines (133 loc) · 7.11 KB
/
face_alignment_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import cv2
import time
import torch
from argparse import ArgumentParser
from ibug.face_alignment import FANPredictor
from ibug.face_alignment.utils import plot_landmarks
from ibug.face_detection import RetinaFacePredictor, S3FDPredictor
def main() -> None:
# Parse command-line arguments
parser = ArgumentParser()
parser.add_argument('--input', '-i', help='Input video path or webcam index (default=0)', default=0)
parser.add_argument('--output', '-o', help='Output file path', default=None)
parser.add_argument('--fourcc', '-f', help='FourCC of the output video (default=mp4v)',
type=str, default='mp4v')
parser.add_argument('--benchmark', '-b', help='Enable benchmark mode for CUDNN',
action='store_true', default=False)
parser.add_argument('--no-display', '-n', help='No display if processing a video file',
action='store_true', default=False)
parser.add_argument('--detection-threshold', '-dt', type=float, default=0.8,
help='Confidence threshold for face detection (default=0.8)')
parser.add_argument('--detection-method', '-dm', default='retinaface',
help='Face detection method, can be either RatinaFace or S3FD (default=RatinaFace)')
parser.add_argument('--detection-weights', '-dw', default=None,
help='Weights to be loaded for face detection, ' +
'can be either resnet50 or mobilenet0.25 when using RetinaFace')
parser.add_argument('--detection-device', '-dd', default='cuda:0',
help='Device to be used for face detection (default=cuda:0)')
parser.add_argument('--alignment-threshold', '-at', type=float, default=0.2,
help='Score threshold used when visualising detected landmarks (default=0.2)'),
parser.add_argument('--alignment-method', '-am', default='fan',
help='Face alignment method, must be set to FAN')
parser.add_argument('--alignment-weights', '-aw', default=None,
help='Weights to be loaded for face alignment, can be either 2DFAN2 or 2DFAN4')
parser.add_argument('--alignment-device', '-ad', default='cuda:0',
help='Device to be used for face alignment (default=cuda:0)')
args = parser.parse_args()
# Set benchmark mode flag for CUDNN
torch.backends.cudnn.benchmark = args.benchmark
vid = None
out_vid = None
has_window = False
try:
# Create the face detector
args.detection_method = args.detection_method.lower()
if args.detection_method == 'retinaface':
face_detector = RetinaFacePredictor(threshold=args.detection_threshold, device=args.detection_device,
model=(RetinaFacePredictor.get_model(args.detection_weights)
if args.detection_weights else None))
print('Face detector created using RetinaFace.')
elif args.detection_method == 's3fd':
face_detector = S3FDPredictor(threshold=args.detection_threshold, device=args.detection_device,
model=(S3FDPredictor.get_model(args.detection_weights)
if args.detection_weights else None))
print('Face detector created using S3FD.')
else:
raise ValueError('detector-method must be set to either RetinaFace or S3FD')
# Create the landmark detector
args.alignment_method = args.alignment_method.lower()
if args.alignment_method == 'fan':
landmark_detector = FANPredictor(device=args.alignment_device,
model=(FANPredictor.get_model(args.alignment_weights)
if args.alignment_weights else None))
print('Landmark detector created using FAN.')
else:
raise ValueError('alignment-method must be set to FAN')
# Open the input video
using_webcam = not os.path.exists(args.input)
vid = cv2.VideoCapture(int(args.input) if using_webcam else args.input)
assert vid.isOpened()
if using_webcam:
print(f'Webcam #{int(args.input)} opened.')
else:
print(f'Input video "{args.input}" opened.')
# Open the output video (if a path is given)
if args.output is not None:
out_vid = cv2.VideoWriter(args.output, fps=vid.get(cv2.CAP_PROP_FPS),
frameSize=(int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))),
fourcc=cv2.VideoWriter_fourcc(*args.fourcc))
assert out_vid.isOpened()
# Process the frames
frame_number = 0
window_title = os.path.splitext(os.path.basename(__file__))[0]
print('Processing started, press \'Q\' to quit.')
while True:
# Get a new frame
_, frame = vid.read()
if frame is None:
break
else:
# Detect faces
start_time = time.time()
faces = face_detector(frame, rgb=False)
current_time = time.time()
elapsed_time = current_time - start_time
# Face alignment
start_time = current_time
landmarks, scores = landmark_detector(frame, faces, rgb=False)
current_time = time.time()
elapsed_time2 = current_time - start_time
# Textural output
print(f'Frame #{frame_number} processed in {elapsed_time * 1000.0:.04f} + ' +
f'{elapsed_time2 * 1000.0:.04f} ms: {len(faces)} faces analysed.')
# Rendering
for face, lm, sc in zip(faces, landmarks, scores):
bbox = face[:4].astype(int)
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=(0, 0, 255), thickness=2)
plot_landmarks(frame, lm, sc, threshold=args.alignment_threshold)
if len(face) > 5:
plot_landmarks(frame, face[5:].reshape((-1, 2)), pts_radius=3)
# Write the frame to output video (if recording)
if out_vid is not None:
out_vid.write(frame)
# Display the frame
if using_webcam or not args.no_display:
has_window = True
cv2.imshow(window_title, frame)
key = cv2.waitKey(1) % 2 ** 16
if key == ord('q') or key == ord('Q'):
print('\'Q\' pressed, we are done here.')
break
frame_number += 1
finally:
if has_window:
cv2.destroyAllWindows()
if out_vid is not None:
out_vid.release()
if vid is not None:
vid.release()
print('All done.')
if __name__ == '__main__':
main()