-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
178 lines (142 loc) · 6.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import sys
import argparse
import datetime
import time
import csv
import os.path as osp
import numpy as np
import warnings
import importlib
import pandas as pd
warnings.filterwarnings('ignore')
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import torchvision
from datasets import CIFAR10D, CIFAR100D
from utils.utils import AverageMeter, Logger, save_networks, load_networks
from core import train, test, test_robustness
parser = argparse.ArgumentParser("Training")
# dataset
parser.add_argument('--data', type=str, default='./data')
parser.add_argument('--outf', type=str, default='./results')
parser.add_argument('-d', '--dataset', type=str, default='cifar10')
parser.add_argument('--workers', default=8, type=int, help="number of data loading workers (default: 4)")
# optimization
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.1, help="learning rate for model")
parser.add_argument('--max-epoch', type=int, default=200)
parser.add_argument('--stepsize', type=int, default=30)
parser.add_argument('--aug', type=str, default='none', help='none, aprs')
# model
parser.add_argument('--model', type=str, default='wider_resnet_28_10')
# misc
parser.add_argument('--eval-freq', type=int, default=10)
parser.add_argument('--print-freq', type=int, default=100)
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--use-cpu', action='store_true')
parser.add_argument('--eval', action='store_true', help="Eval", default=False)
# parameters for generating adversarial examples
parser.add_argument('--epsilon', '-e', type=float, default=0.0157,
help='maximum perturbation of adversaries (4/255=0.0157)')
parser.add_argument('--alpha', '-a', type=float, default=0.00784,
help='movement multiplier per iteration when generating adversarial examples (2/255=0.00784)')
parser.add_argument('--k', '-k', type=int, default=10,
help='maximum iteration when generating adversarial examples')
parser.add_argument('--perturbation_type', '-p', choices=['linf', 'l2'], default='linf',
help='the type of the perturbation (linf or l2)')
args = parser.parse_args()
options = vars(args)
if not os.path.exists(options['outf']):
os.makedirs(options['outf'])
if not os.path.exists(options['data']):
os.makedirs(options['data'])
sys.stdout = Logger(osp.join(options['outf'], 'logs.txt'))
def main():
torch.manual_seed(options['seed'])
os.environ['CUDA_VISIBLE_DEVICES'] = options['gpu']
use_gpu = torch.cuda.is_available()
if options['use_cpu']: use_gpu = False
options.update({'use_gpu': use_gpu})
if use_gpu:
print("Currently using GPU: {}".format(options['gpu']))
cudnn.benchmark = True
torch.cuda.manual_seed_all(options['seed'])
else:
print("Currently using CPU")
if 'cifar10' == options['dataset']:
Data = CIFAR10D(dataroot=options['data'], batch_size=options['batch_size'], _transforms=options['aug'], _eval=options['eval'])
OODData = CIFAR100D(dataroot=options['data'], batch_size=options['batch_size'], _transforms=options['aug'])
else:
Data = CIFAR100D(dataroot=options['data'], batch_size=options['batch_size'], _transforms=options['aug'], _eval=options['eval'])
OODData = CIFAR10D(dataroot=options['data'], batch_size=options['batch_size'], _transforms=options['aug'])
trainloader, testloader, outloader = Data.train_loader, Data.test_loader, OODData.test_loader
num_classes = Data.num_classes
print("Creating model: {}".format(options['model']))
if 'wide_resnet' in options['model']:
print('wide_resnet')
from model.wide_resnet import WideResNet
net = WideResNet(40, num_classes, 2, 0.0)
elif 'allconv' in options['model']:
print('allconv')
from model.allconv import AllConvNet
net = AllConvNet(num_classes)
elif 'densenet' in options['model']:
print('densenet')
from model.densenet import densenet
net = densenet(num_classes=num_classes)
elif 'resnext' in options['model']:
print('resnext29')
from model.resnext import resnext29
net = resnext29(num_classes)
else:
print('resnet18')
from model.resnet import ResNet18
net = ResNet18(num_classes=num_classes)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
if use_gpu:
net = nn.DataParallel(net, device_ids=[i for i in range(len(options['gpu'].split(',')))]).cuda()
criterion = criterion.cuda()
file_name = '{}_{}_{}'.format(options['model'], options['dataset'], options['aug'])
if options['eval']:
net, criterion = load_networks(net, options['outf'], file_name, criterion=criterion)
outloaders = Data.out_loaders
results = test(net, criterion, testloader, outloader, epoch=0, **options)
acc = results['ACC']
res = dict()
res['ACC'] = dict()
acc_res = []
for key in Data.out_keys:
results = test_robustness(net, criterion, outloaders[key], epoch=0, label=key, **options)
print('{} (%): {:.3f}\t'.format(key, results['ACC']))
res['ACC'][key] = results['ACC']
acc_res.append(results['ACC'])
print('Mean ACC:', np.mean(acc_res))
print('Mean Error:', 100-np.mean(acc_res))
return
params_list = [{'params': net.parameters()},
{'params': criterion.parameters()}]
optimizer = torch.optim.SGD(params_list, lr=options['lr'], momentum=0.9, nesterov=True, weight_decay=5e-4)
scheduler = lr_scheduler.MultiStepLR(optimizer, gamma=0.2, milestones=[60, 120, 160, 190])
start_time = time.time()
best_acc = 0.0
for epoch in range(options['max_epoch']):
print("==> Epoch {}/{}".format(epoch+1, options['max_epoch']))
train(net, criterion, optimizer, trainloader, epoch=epoch, **options)
if options['eval_freq'] > 0 and (epoch+1) % options['eval_freq'] == 0 or (epoch+1) == options['max_epoch'] or epoch > 160:
print("==> Test")
results = test(net, criterion, testloader, outloader, epoch=epoch, **options)
if best_acc < results['ACC']:
best_acc = results['ACC']
print("Best Acc (%): {:.3f}\t".format(best_acc))
save_networks(net, options['outf'], file_name, criterion=criterion)
scheduler.step()
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
if __name__ == '__main__':
main()