-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathph_try2.py
264 lines (235 loc) · 11.2 KB
/
ph_try2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python
import numpy as np
import sys
#sys.path.append("../../Day1/VMC/solutions")
from metropolis import metropolis_sample
import pandas as pd
#define various constants
elec = 1.602E-19*2997924580 #convert C to statC
hbar = 1.054E-34 #J*s
m = 9.11E-31 #kg
w = 0.1*1.602E-19/hbar
epssr = 23000
epsinf = 2.394**2
conv = 1E-9/1.602E-19 #convert statC^2 (expressions with elec^2) to eV
convJ = 1/1.602E-19 #convert J to eV
eta_STO = epsinf/epssr
alpha = (elec**2*1E-9)/hbar*np.sqrt(m/(2*hbar*w))*1/epsinf*(1 - epsinf/epssr) #convert statC to J*m
U_STO = elec**2/(epsinf*hbar)*np.sqrt(2*m/(hbar*w))*1E-9 #convert statC in e^2 term into J to make U dimensionless
Ry = m*elec**4*(1E-9)**2/(2*epsinf**2 *hbar**2)*1/1.602E-19 #Rydberg energy unit in media, eV
a0 = hbar**2*epsinf/(m*elec**2 *1E-9); #Bohr radius in media
l = np.sqrt(hbar/(2*m*w))/ a0 #phonon length in units of the Bohr radius
#####################################
def elec_energies(pos,wf,ham):
""" calculate kinetic + Coulomb energies
Input:
pos: electron positions (nelec,ndim,nconf)
wf: wavefunction
ham: hamiltonian
Return:
ke: kinetic energy
pot: Coulomb energy - a constant for fixed electrons
eloc: local energy
"""
#ke = - np.sum(wf.laplacian(pos), axis=0)
pot = ham.pot_ee(pos)
return pot
def mixed_estimator(ham, g, pos, rho, kmag, h_ks, f_ks):
'''
Calculate energy using the mixed estimator form E_0 = <psi_T| H |phi>, psi_T & phi are coherent states
Input:
pos: electron positions (nelec, ndim, nconfigs)
rho: electron density (eikr1 + eikr2)
kmag: k-vector magnitudes, matrix size (len(ks), nconfigs)
h_ks: coherent state amplitudes of trial wave function psi_T (len(ks), nconfigs)
f_ks: coherent state amplitudes of our time-evolved numerical coherent state |{f_k}>
'''
#Find electron phonon energy
H_eph = 1j*g*np.sum( (-f_ks * rho + np.conj(h_ks) *np.conj(rho))/kmag , axis=0) #sum over all k values; f/kmag = (# ks) x nconfigs matrix
#find H_ph
fhmag = f_ks* np.conj(h_ks) #find f_k magnitudes
H_ph = 1/l**2 * np.sum(fhmag,axis=0)
return ham.pot_ee(pos) + H_eph + H_ph
#####################################
def acceptance(posold, posnew, driftold, driftnew, tau, wf):
"""
Acceptance for importance sampling
Input:
poscur: electron positions before move (nelec,ndim,nconf)
posnew: electron positions after move (nelec,ndim,nconf)
driftnew: drift vector at posnew
tau: time step
wf: wave function object
Return:
ratio: [backward move prob.]/[forward move prob.]
"""
gfratio = np.exp(
-np.sum((posold - posnew - driftnew) ** 2 / (2 * tau), axis=(0, 1))
+ np.sum((posnew - posold - driftold) ** 2 / (2 * tau), axis=(0, 1))
)
ratio = wf.value(posnew) ** 2 / wf.value(posold) ** 2
#print((ratio[0],gfratio[0]))
return np.minimum(1,ratio * gfratio)
def init_f_k(ks, kmag, g, nconfig):
'''
Initialize the phonon displacement functions f_k from the optimized Gaussian result
input:
ks: allowed k-vectors in the supercell
'''
#find f_ks
yopt = 1.39
sopt = 1.05E-9/a0 #in units of the Bohr radius
d = yopt*sopt #assume pointing in z direction
f_ks = -2j*g*l**2/kmag* np.exp(-kmag**2 * sopt**2/4) * (np.cos(ks[:,2] * d/2) - np.exp(-yopt**2/2) )/(1- np.exp(-yopt**2/2))
f_kcopy = np.array([[ f_ks[i] for j in range(nconfig)] for i in range(len(ks))]) #make f_ks array size (# ks) x (# configurations)
return f_kcopy
from itertools import product
def simple_dmc(wf, ham, tau, pos, g,nstep=1000, N=5, L=10):
"""
Inputs:
g: DOS for el-ph interaction
w: LO phonon freq
N: number of allowed k-vals in each direction
L: box length (units of a0)
Outputs:
A Pandas dataframe with each
"""
df = {
"step": [],
"elocal": [],
"weight": [],
"weightvar": [],
"elocalvar": [],
"eref": [],
"tau": [],
}
nconfig = pos.shape[2]
#pos, acc = metropolis_sample(pos, wf, tau=0.5)
weight = np.ones(nconfig)
#Make a supercell/box
#k = (nx, ny, nz)*2*pi/L for nx^2+ny^2+nz^2 <= n_c^2 for cutoff value n_c = N, where n_c -> inf is the continuum limit.
#A k-sphere cutoff is conventional as it specifies a unique KE cutoff
ks = 2*np.pi/L* np.array([[nx,ny,nz] for nx,ny,nz in product(range(1,N+1), range(1,N+1), range(1,N+1)) if nx**2+ny**2+nz**2 <= N**2 ])
kmag = np.sum(ks**2,axis=1)**0.5 #find k magnitudes
kcopy = np.array([[ kmag[i] for j in range(nconfig)] for i in range(len(kmag))])
#initialize f_ks
f_ks = init_f_k(ks, kmag, g,nconfig)
h_ks = f_ks #this describes our trial wave fxn coherent state amplitudes
eref = -0.17/Ry #initialize reference energy with our best guess for the Gaussian bipolaron binding energy (units of Ry)
for istep in range(nstep):
# Drift+diffusion - no diffusion here since electrons are fixed in place
#update weights from H_coul (no KE here)
weight *= np.exp(-tau * ham.pot_ee(pos))
dprod1 = np.matmul(ks,pos[0,:,:]) #np array for each k value; k dot r1
dprod2 = np.matmul(ks,pos[1,:,:]) #k dot r2
rho = np.exp(1j*dprod1) + np.exp(1j*dprod2) #electron density eikr1 + eikr2
#Update f_k from H_ph and H_eph
f1 = f_ks - 1j*tau*g/kcopy * np.conj(rho)
f2 = f1* np.exp(-tau/l**2)
if istep % 100 == 0:
print("iteration",istep,"wt",np.mean(weight))
#Update weights from H_ph and H_eph, and calculate local energy
weight = weight* np.exp(np.sum(tau*1j*g * f_ks/kcopy*rho,axis=0))
weight = weight* np.exp(np.sum( -0.5*(np.conj(h_ks)*h_ks + np.conj(f_ks)*f_ks) + np.conj(h_ks)*(f2),axis=0))
w_norm = np.exp(np.sum( -0.5*(np.conj(h_ks)*h_ks + np.conj(f_ks)*f_ks) + np.conj(h_ks)* f_ks,axis=0)) #normalization factor <w_n> = <h|f> ~ exp(\sum h* f) for calculation of E_gth (and updating E_ref)
E_0 = -1/tau*np.log(np.mean(weight)) #growth estimator formulation of energy: E_gth = E_0 - E_ref, E_0 = GS energy, target is E_ref = E_0 i.e. E_gth = 0
weight *= np.exp(tau*eref) #subtracting off reference energy to manage walker population
if istep % 100 == 0:
print("wt (3)",np.mean(np.exp(tau*eref)))
E_mix = mixed_estimator(ham, g, pos, rho, kcopy, h_ks, f_ks) #mixed estimator formulation of energy
f_ks = f2
# Branch
wtot = np.sum(weight)
wavg = wtot / nconfig
E_gth = -1./tau*np.log(wavg/np.mean(w_norm))
# Update the reference energy
eref = eref + E_gth #this is literally just setting eref = E_0 in a very roundabout way
#eref = E_0
'''
if istep % 100 == 0:
print(
"iteration",
istep,
"average weight",
wavg,
"E_mix",
np.mean(E_mix),
"E_0", #at this particular step, per config; should converge to E_mix as tau -> 0. In this toy problem E_0 = E_loc = E_ref
#np.mean(eloc * weight / wavg),
np.mean(E_0),
"E_gth", #want E_gth = 0 as tau -> inf
E_gth,
"eref",
eref,
#"f_k0",
#f_ks[0][0],
)
'''
df["step"].append(istep)
df["elocal"].append(np.mean(E_0))
df["weight"].append(np.mean(weight))
df["elocalvar"].append(np.std(E_0))
df["weightvar"].append(np.std(weight))
df["eref"].append(eref)
df["tau"].append(tau)
#Branching lets us split the walkers with too-large weights and kill the walkers with too-small weights; want to keep # walkers = const
#The growth estimator should be done between population control calls. That is, evaluate a w' and w, compute their ratio, without calling "comb". Only call "comb" to do population control once every few steps (say every 10 steps)!!
if istep % 50 == 0:
'''
#DMC tutorial comb algorithm
probs = np.cumsum(weight/wtot) #stack up weights from each walker to find cumulative probabilities over each step - sums to 1 (i.e. last elt = 1)
randnums = np.random.random(nconfig) #throw random numbers b/w 0 and 1 for each walker
new_idxs = np.searchsorted(probs, randnums) #find indices where the random number walkers would fit into the probs array
pos = pos[:,:,new_idxs] #update walkers, AKA slicing; selects only those walkers with weights between 0 and 1, kills the rest
weight.fill(wavg)
'''
'''
#RMP_DMC article suggestion for branching algorithm
newwalkers = weight + np.random.uniform(high=1.,size=nconfig) #number of walkers progressing to next step at each position
newwalkers = np.array(list(map(int,newwalkers)))
#find indices where number of new walkers > 0; configs where newwalkers = 0 get killed off
new_idxs = np.where(newwalkers >0)[0]
newpos = pos[:,:,new_idxs] #newpos contains only configs which contain >= 1 walker. Now want to append positions to this
newwts = weight[new_idxs]
newfs = f_ks[:,new_idxs]
#now append new walkers to our basis state arrays (position, f_k's, weights)
for i in np.where(newwalkers >1)[0]:
for num in range(newwalkers[i]-1):
newpos = np.append(newpos, pos[:,:,i][:,:,np.newaxis], axis=2)
#need to update weights as well
newwts = np.append(newwts, np.array([weight[i]]))
newfs = np.append(newfs, f_ks[:,i][:,np.newaxis], axis=1)
pos = newpos
weight = newwts
f_ks = newfs
nconfig = pos.shape[-1]
kcopy = np.array([[ kmag[i] for j in range(nconfig)] for i in range(len(kmag))])
h_ks = init_f_k(ks, kmag, g,nconfig)
'''
#weight.fill(1.) #use if no branching
return pd.DataFrame(df)
#####################################
if __name__ == "__main__":
#from slaterwf import ExponentSlaterWF
from wavefunction import MultiplyWF, JastrowWF
from hamiltonian import Hamiltonian
nconfig = 10 #default is 5000, we only need one since there's no randomness/branching going on yet
dfs = []
N = 10 #num of momenta
L = 5 #sys size/length measured in a0
g = 2/l**2 *np.sqrt(np.pi*alpha* l/L**3)
U = 2.
for tau in [0.01]: #,0.005, 0.0025]:
dfs.append(
simple_dmc(
JastrowWF(0.5),
#MultiplyWF(ExponentSlaterWF(2.0), JastrowWF(0.5)),
Hamiltonian(g=g,hw=1/l**2),
pos=np.random.randn(2, 3, nconfig),
g=g,N=N, L=L,
tau=tau,
nstep=10000, #orig: 10000
)
)
df = pd.concat(dfs)
df.to_csv("phonon_mc.csv", index=False)