-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolutions.txt
101 lines (70 loc) · 2.19 KB
/
Solutions.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Day 1: Arrays
* Set Matrix Zeroes
class Solution:
def setZeroes(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
"""
if len(matrix) == 1:
gg = matrix[0].count(0)
if gg > 0:
for i in range(len(matrix[0])):
matrix[0][i] = 0
return matrix
if len(matrix[0]) == 1:
gg = 0
for i in range(len(matrix)):
if matrix[i][0] == 0:
gg += 1
if gg > 0:
for i in range(len(matrix)):
matrix[i][0] = 0
return matrix
n,m = len(matrix),len(matrix[0])
flag,gflag = 0,0
for i in range(n):
for j in range(m):
if matrix[i][j] == 0:
if i == 0:
flag = 1
else:
matrix[i][0] = 0
if j == 0:
gflag = 1
else:
matrix[0][j] = 0
for i in range(1,n):
if matrix[i][0] == 0:
for j in range(1,m):
matrix[i][j] = 0
for j in range(1,m):
if matrix[0][j] == 0:
for i in range(1,n):
matrix[i][j] = 0
if flag:
for i in range(m):
matrix[0][i] = 0
if gflag:
for i in range(n):
matrix[i][0] = 0
return matrix
* Pascal's Triangle
class Solution:
def generate(self, numRows: int) -> List[List[int]]:
n = numRows
if n == 0:
return []
if n == 1:
return [[1]]
if n == 2:
return [[1],[1,1]]
l = [[1],[1,1]]
for i in range(3,n+1):
c = l[-1]
o = [1]
for j in range(len(c)-1):
o.append(c[j]+c[j+1])
o.append(1)
l.append(o)
return l
Note : If you want to find a row only , just write binomial coefficient of (x+y)^(r-1) where r is the row.