-
Notifications
You must be signed in to change notification settings - Fork 4
/
ppe.py
455 lines (359 loc) · 16.8 KB
/
ppe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 09 10:59:46 2019
@author: Ian
"""
# USAGE
# python lettuce.py --mode train
# python lettuce.py --mode investigate
# python lettuce.py --mode predict --image examples/.jpg
# python lettuce.py --mode predict --image examples/.jpg --weights logs/....
#IMPORT NECESSARY PACKAGES
#########################################################################
#create additional training data by applying random transformations
#reduces overfitting and allows greater generalizability
from imgaug import augmenters as iaa
#subclassing the Config class to derive configuration for training
from mrcnn.config import Config
#contains the mask-rcnn model itself
from mrcnn import model as modellib
#visualize output predictions of the mask-rcnn
from mrcnn import visualize
#various utilities leveraged
from mrcnn import utils
from imutils import paths
import numpy as np
import argparse
import imutils
import skimage
import random
import json
import cv2
import os
#utilities for capturing video streams
from imutils.video import VideoStream
from imutils.video import FPS
import datetime
import time
# initialize the dataset path, images path, and annotations file path
DATASET_PATH = os.path.abspath("ppe")
IMAGES_PATH = os.path.sep.join([DATASET_PATH, "images"])
ANNOT_PATH = os.path.sep.join([DATASET_PATH, "via_region_data.json"])
# initialize the amount of data to use for training
TRAINING_SPLIT = 0.75
# grab all image paths, then randomly select indexes for both training
# and validation
IMAGE_PATHS = sorted(list(paths.list_images(IMAGES_PATH)))
idxs = list(range(0, len(IMAGE_PATHS)))
random.seed(42)
random.shuffle(idxs)
i = int(len(idxs) * TRAINING_SPLIT)
trainIdxs = idxs[:i]
valIdxs = idxs[i:]
# initialize the class names dictionary
CLASS_NAMES = {1: "Helmet", 2: "No Helmet", 3: "Vest", 4: "No Vest"}
# initialize the path to the Mask R-CNN pre-trained on COCO
COCO_PATH = "mask_rcnn_coco.h5"
# initialize the name of the directory where logs and output model
# snapshots will be stored
LOGS_AND_MODEL_DIR = os.path.sep.join([DATASET_PATH, "logs_ppe"])
class PPEConfig(Config):
# give the configuration a recognizable name
NAME = "PPE"
# set the number of GPUs to use training along with the number of
# images per GPU (which may have to be tuned depending on how
# much memory your GPU has)
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# set the number of steps per training epoch
STEPS_PER_EPOCH = len(trainIdxs) // (IMAGES_PER_GPU * GPU_COUNT)
# number of classes (+1 for the background)
NUM_CLASSES = len(CLASS_NAMES) + 1
class PPEInferenceConfig(PPEConfig):
# set the number of GPUs and images per GPU (which may be
# different values than the ones used for training)
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# set the minimum detection confidence (used to prune out false
# positive detections)
DETECTION_MIN_CONFIDENCE = 0.9
class PPEDataset(utils.Dataset):
def __init__(self, imagePaths, annotPath, classNames, width=1024):
# call the parent constructor
super().__init__(self)
# store the image paths and class names along with the width
# we'll resize images to
self.imagePaths = imagePaths
self.classNames = classNames
self.width = width
# load the annotation data
self.annots = self.load_annotation_data(annotPath)
def load_annotation_data(self, annotPath):
# load the contents of the annotation JSON file (created
# using the VIA tool) and initialize the annotations dictionary
annotations = json.loads(open(annotPath).read())
annots = {}
# loop over the file ID and annotations themselves (values)
for (fileID, data) in sorted(annotations.items()):
# store the data in the dictionary using the filename as
# the key
#annots.append(data)
annots[data["filename"]] = data
# return the annotations dictionary
return annots
def load_ppe(self, idxs):
# loop over all class names and add each to the Lettuce
# dataset
for (classID, label) in self.classNames.items():
self.add_class("PPE", classID, label)
# loop over the image path indexes
for i in idxs:
# extract the image filename to serve as the unique
# image ID
imagePath = self.imagePaths[i]
filename = imagePath.split(os.path.sep)[-1]
# load the image and resize it so we can determine its
# width and height (unfortunately VIA does not embed
# this information directly in the annotation file
image = cv2.imread(imagePath)
(origH, origW) = image.shape[:2]
image = imutils.resize(image, width=self.width)
(newH, newW) = image.shape[:2]
#print(self.annots)
polygons, names = [], []
#print(self.annots)
for r in self.annots[str(i)+".jpg"]["regions"]:
polygons.append(r["shape_attributes"])
names.append(r["region_attributes"])
# add the image to the dataset
self.add_image("PPE",
image_id=filename,
height=newH,
width=newW,
orig_width=origW,
orig_height=origH,
polygons=polygons,
names=names,
path=imagePath)
def load_image(self, imageID):
""" grab the image path, load it, and convert from BGR to RGB colour channel ordering
"""
p = self.image_info[imageID]["path"]
image = cv2.imread(p)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# resize the image, preserving the aspect ratio
image = imutils.resize(image, width=self.width)
return image
def load_mask(self, imageID):
""" Generates instance masks for an image.
Returns:
masks: A bool array of shape [height, width, num_instances] with one mask per instance
classIDs: a 1D array of class IDs of the instance masks
{
"0.jpg4422650":
{
"filename":"0.jpg",
"size":4422650,
"regions":
[{
"shape_attributes":
{
"name": "polygon",
"all_points_x": [...],
"all_points_y": [...],
},
"region_attributes":
{
"Lettuce": "1"
}
}],
"file_attributes": {}
}
}
"""
#grab the image info and then grab the annotation data for
#the current image based on the unique ID
info = self.image_info[imageID]
class_names = info["names"]
#annot = self.annots[info["id"]]
#print(info["polygons"])
#print(info["names"])
#print(len(info["polygons"]))
if info["source"]!= "PPE":
return super(self.__class__, self).load_mask(imageID)
# allocate memory for our [height, width, num_instances] array
# where each "instance" effectively has its own "channel"
mask = np.zeros((info["height"], info["width"], len(info["polygons"])), dtype="uint8")
all_newY, all_newX = [], []
#there are n instance dictionaries in polygons (list of dictionaries)
#each instance dictionary has 3 keys
#"name", "all_points_x", "all_points_y"
for i, p in enumerate(info["polygons"]):
# allocate memory for the region mask
#regionMask = np.zeros(masks.shape[:2], dtype="uint8")
ratio = info["width"] / float(info["orig_width"])
for pix in p["all_points_y"]:
all_newY.append(int(pix * ratio))
for pix in p["all_points_x"]:
all_newX.append(int(pix * ratio))
#get the indexes of pixels inside the polygon and set them to 1
rr,cc = skimage.draw.polygon(all_newY, all_newX, shape=mask.shape)
#rr,cc = skimage.draw.polygon(p["all_points_y"], p["all_points_x"])
mask[rr, cc, i] = 1
class_ids = np.zeros(len(info["polygons"]))
# loop over each of the annotated region
#there are n instance dictionaries in names (list of dictionaries)
for i, p in enumerate(class_names):
if p["Helmet"] == "1":
class_ids[i] = 1
if p["No Helmet"] == "2":
class_ids[i] = 2
if p["Vest"] == "3":
class_ids[i] = 3
if p["No Vest"] == "4":
class_ids[i] = 4
class_ids = class_ids.astype(int)
# return the mask array and class IDs
return mask.astype(np.bool), class_ids
############################################################################################################
if __name__ == "__main__":
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--mode", required=True, help="either 'train', 'predict', or 'investigate'")
ap.add_argument("-w", "--weights", help="optional path to pretrained weights")
ap.add_argument("-i", "--input", help="optional path to input video file")
args = vars(ap.parse_args())
# check to see if we are training the Mask R-CNN
if args["mode"] == "train":
# load the training dataset
trainDataset = PPEDataset(IMAGE_PATHS, ANNOT_PATH, CLASS_NAMES)
trainDataset.load_ppe(trainIdxs)
trainDataset.prepare()
# load the validation dataset
valDataset = PPEDataset(IMAGE_PATHS, ANNOT_PATH, CLASS_NAMES)
valDataset.load_ppe(valIdxs)
valDataset.prepare()
# initialize the training configuration
config = PPEConfig()
config.display()
# initialize the model and load the COCO weights so we can perform fine-tuning
model = modellib.MaskRCNN(mode="training", config=config, model_dir=LOGS_AND_MODEL_DIR)
model.load_weights(COCO_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"])
# train *just* the layer heads
model.train(trainDataset, valDataset, epochs=10, layers="heads", learning_rate=config.LEARNING_RATE)
# unfreeze the body of the network and train *all* layers
model.train(trainDataset, valDataset, epochs=20, layers="all", learning_rate=config.LEARNING_RATE / 10)
# check to see if we are predicting using a trained Mask R-CNN
elif args["mode"] == "predict":
# initialize the inference configuration
config = PPEInferenceConfig()
# initialize the Mask R-CNN model for inference
model = modellib.MaskRCNN(mode="inference", config=config, model_dir=LOGS_AND_MODEL_DIR)
# load our trained Mask R-CNN
weights = args["weights"] if args["weights"] \
else model.find_last()
model.load_weights(weights, by_name=True)
#load input image
if not args.get("input", False):
print("starting video stream...")
cap = VideoStream(src=0).start()
time.sleep(2.0)
else:
#otherwise, grab a reference to the video file
print("opening video file")
cap = cv2.VideoCapture(args["input"])
fps = FPS().start()
class_names = ["BG", "Helmet", "No Helmet", "Vest", "No Vest"]
#classes to keep the same mask in frames, generate colors for masks
colors = visualize.random_colors(len(class_names))
#llop over frames from the video stream
while True:
#read frame
image = cap.read()
image = image[1] if args.get("input", False) else image
#if we are viewing a video and we did not grab a frame
#then we have reached the end of the video
if args["input"] is not None and image is None:
break
#resize the image and convert it from BGR to RGB channel ordering
image = imutils.resize(image, width=1024)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
#image = image[..., ::-1]
# perform a forward pass of the network to obtain the results
r = model.detect([image], verbose=1)[0]
"""
# loop over of the detected object's bounding boxes and masks, drawing each as we go along
for i in range(0, r["rois"].shape[0]):
mask = r["masks"][:, :, i]
image = visualize.apply_mask(image, mask, (1.0, 0.0, 0.0), alpha=0.5)
image = visualize.draw_box(image, r["rois"][i], (1.0, 0.0, 0.0))
# convert the image back to BGR so we can use OpenCV's drawing functions
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# loop over the predicted scores and class labels
for i in range(0, len(r["scores"])):
# extract the bounding box information, class ID, label,
# and predicted probability from the results
(startY, startX, endY, end) = r["rois"][i]
classID = r["class_ids"][i]
label = CLASS_NAMES[classID]
score = r["scores"][i]
# draw the class label and score on the image
text = "{}: {:.4f} at {}".format(label, score, str(time.strftime("%H:%M:%S")))
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
"""
# resize the image so it more easily fits on our screen
image = imutils.resize(image, width=512)
output = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
class_names, r['scores'], colors=colors, real_time=True)
# show the output image
cv2.imshow("Output", output)
#cv2.imshow("Output", image)
#interrupt trigger by pressing q to interrupt the OpenCV program
ch = cv2.waitKey(1)
if ch & 0xFF == ord("q"):
break
fps.update()
fps.stop()
#Cleanup
cv2.waitKey(0)
if not args.get("input", False):
cap.stop()
else:
cap.release()
cv2.destroyAllWindows()
# check to see if we are investigating our images and mask
elif args["mode"] == "investigate":
# load the training dataset
trainDataset = PPEDataset(IMAGE_PATHS, ANNOT_PATH, CLASS_NAMES)
trainDataset.load_ppe(trainIdxs)
trainDataset.prepare()
# load the 0-th training image and corresponding masks and
# class IDs in the masks
image = trainDataset.load_image(0)
(masks, classIDs) = trainDataset.load_mask(0)
# show the image spatial dimensions which is HxWxC
print("image shape: {}".format(image.shape))
# show the masks shape which should have the same width and
# height of the images but the third dimension should be
# equal to the total number of instances in the image itself
print("masks shape: {}".format(masks.shape))
# show the length of the class IDs list along with the values
# inside the list -- the length of the list should be equal
# to the number of instances dimension in the 'masks' array
print("class IDs length: {}".format(len(classIDs)))
print("class IDs: {}".format(classIDs))
print("\n")
# determine a sample of training image indexes and loop over them
for i in np.random.choice(trainDataset.image_ids, 3):
# load the image and masks for the sampled image
print("investigating image index: {}".format(i))
image = trainDataset.load_image(i)
(masks, classIDs) = trainDataset.load_mask(i)
print("image shape: {}".format(image.shape))
print("masks shape: {}".format(masks.shape))
print("class IDs length: {}".format(len(classIDs)))
print("class IDs: {}".format(classIDs))
print("\n")
# visualize the masks for the current image
visualize.display_top_masks(image, masks, classIDs, trainDataset.class_names)