-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathtest_mu_law.py
272 lines (200 loc) · 8.9 KB
/
test_mu_law.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import numpy as np
import tensorflow as tf
from wavenet import mu_law_encode, mu_law_decode
QUANT_LEVELS = 256
# A set of mu law encode/decode functions implemented
# in numpy
def manual_mu_law_encode(signal, quantization_channels):
# Manual mu-law companding and mu-bits quantization
mu = quantization_channels - 1
magnitude = np.log1p(mu * np.abs(signal)) / np.log1p(mu)
signal = np.sign(signal) * magnitude
# Map signal from [-1, +1] to [0, mu-1]
signal = (signal + 1) / 2 * mu + 0.5
quantized_signal = signal.astype(np.int32)
return quantized_signal
def manual_mu_law_decode(signal, quantization_channels):
# Calculate inverse mu-law companding and dequantization
mu = quantization_channels - 1
y = signal.astype(np.float32)
y = 2 * (y / mu) - 1
x = np.sign(y) * (1.0 / mu) * ((1.0 + mu)**abs(y) - 1.0)
return x
class TestMuLaw(tf.test.TestCase):
def testDecodeEncode(self):
# generate every possible quantized level.
x = np.array(range(QUANT_LEVELS), dtype=np.int)
# Encoded then decode every value.
with self.test_session() as sess:
# Decode into floating-point scalar.
decoded = mu_law_decode(x, QUANT_LEVELS)
# Encode back into an integer quantization level.
encoded = mu_law_encode(decoded, QUANT_LEVELS)
round_tripped = sess.run(encoded)
# decoding then encoding every level should produce what we started
# with.
self.assertAllEqual(x, round_tripped)
def testMinMaxRange(self):
# Generate every possible quantized level.
x = np.array(range(QUANT_LEVELS), dtype=np.int)
# Decode back into float scalars.
with self.test_session() as sess:
# Decode into floating-point scalar.
decoded = mu_law_decode(x, QUANT_LEVELS)
all_scalars = sess.run(decoded)
# Our range should be exactly [-1,1].
max_val = np.max(all_scalars)
min_val = np.min(all_scalars)
EPSILON = 1e-10
self.assertNear(max_val, 1.0, EPSILON)
self.assertNear(min_val, -1.0, EPSILON)
def testEncodeDecodeShift(self):
x = np.linspace(-1, 1, 1000).astype(np.float32)
with self.test_session() as sess:
encoded = mu_law_encode(x, QUANT_LEVELS)
decoded = mu_law_decode(encoded, QUANT_LEVELS)
roundtripped = sess.run(decoded)
# Detect non-unity scaling and non-zero shift in the roundtripped
# signal by asserting that slope = 1 and y-intercept = 0 of line fit to
# roundtripped vs x values.
coeffs = np.polyfit(x, roundtripped, 1)
slope = coeffs[0]
y_intercept = coeffs[1]
EPSILON = 1e-4
self.assertNear(slope, 1.0, EPSILON)
self.assertNear(y_intercept, 0.0, EPSILON)
def testEncodeDecode(self):
x = np.linspace(-1, 1, 1000).astype(np.float32)
channels = 256
# Test whether decoded signal is roughly equal to
# what was encoded before
with self.test_session() as sess:
encoded = mu_law_encode(x, channels)
x1 = sess.run(mu_law_decode(encoded, channels))
self.assertAllClose(x, x1, rtol=1e-1, atol=0.05)
# Make sure that re-encoding leaves the waveform invariant
with self.test_session() as sess:
encoded = mu_law_encode(x1, channels)
x2 = sess.run(mu_law_decode(encoded, channels))
self.assertAllClose(x1, x2)
def testEncodeIsSurjective(self):
x = np.linspace(-1, 1, 10000).astype(np.float32)
channels = 123
with self.test_session() as sess:
encoded = sess.run(mu_law_encode(x, channels))
self.assertEqual(len(np.unique(encoded)), channels)
def testEncodePrecomputed(self):
channels = 256
number_of_samples = 10
x = np.array([-1.0, 1.0, 0.6, -0.25, 0.01,
0.33, -0.9999, 0.42, 0.1, -0.45]).astype(np.float32)
encoded_manual = np.array([0, 255, 243, 32, 157,
230, 0, 235, 203, 18]).astype(np.int32)
with self.test_session() as sess:
encoded = sess.run(mu_law_encode(x, channels))
self.assertAllEqual(encoded_manual, encoded)
def testEncodeUniformRandomNoise(self):
np.random.seed(42) # For repeatability of test.
channels = 256
number_of_samples = 2048
x = np.random.uniform(-1, 1, number_of_samples).astype(np.float32)
manual_encode = manual_mu_law_encode(x, channels)
with self.test_session() as sess:
encode = sess.run(mu_law_encode(x, channels))
self.assertAllEqual(manual_encode, encode)
def testEncodeRandomConstant(self):
np.random.seed(1944) # For repeatability of test.
channels = 256
number_of_samples = 1024
x = np.zeros(number_of_samples).astype(np.float32)
x.fill(np.random.uniform(-1, 1))
manual_encode = manual_mu_law_encode(x, channels)
with self.test_session() as sess:
encode = sess.run(mu_law_encode(x, channels))
self.assertAllEqual(manual_encode, encode)
def testEncodeRamp(self):
np.random.seed(1944) # For repeatability of test.
channels = 256
number_of_samples = 1024
number_of_steps = 2.0 / number_of_samples
x = np.arange(-1.0, 1.0, number_of_steps).astype(np.float32)
manual_encode = manual_mu_law_encode(x, channels)
with self.test_session() as sess:
encode = sess.run(mu_law_encode(x, channels))
self.assertAllEqual(manual_encode, encode)
def testEncodeZeros(self):
np.random.seed(1944) # For repeatability of test.
channels = 256
number_of_samples = 1024
x = np.zeros(number_of_samples).astype(np.float32)
manual_encode = manual_mu_law_encode(x, channels)
with self.test_session() as sess:
encode = sess.run(mu_law_encode(x, channels))
self.assertAllEqual(manual_encode, encode)
def testEncodeNegativeChannelSize(self):
np.random.seed(1944) # For repeatability of test.
channels = -256
number_of_samples = 1024
x = np.zeros(number_of_samples).astype(np.float32)
manual_encode = manual_mu_law_encode(x, channels)
with self.test_session() as sess:
self.assertRaises(TypeError, sess.run(mu_law_encode(x, channels)))
def testDecodeUniformRandomNoise(self):
np.random.seed(1944) # For repeatability of test.
channels = 256
number_of_samples = 10
x = np.random.uniform(-1, 1, number_of_samples).astype(np.float32)
y = manual_mu_law_encode(x, channels)
manual_decode = manual_mu_law_decode(y, channels)
with self.test_session() as sess:
decode = sess.run(mu_law_decode(y, channels))
self.assertAllEqual(manual_decode, decode)
def testDecodeUniformRandomNoise(self):
np.random.seed(40)
channels = 128
number_of_samples = 512
x = np.random.uniform(-1, 1, number_of_samples)
y = manual_mu_law_encode(x, channels)
decoded_manual = manual_mu_law_decode(y, channels)
with self.test_session() as sess:
decode = sess.run(mu_law_decode(y, channels))
self.assertAllEqual(decoded_manual, decode)
def testDecodeRandomConstant(self):
np.random.seed(40)
channels = 128
number_of_samples = 512
x = np.zeros(number_of_samples)
x.fill(np.random.uniform(-1, 1))
y = manual_mu_law_encode(x, channels)
decoded_manual = manual_mu_law_decode(y, channels)
with self.test_session() as sess:
decode = sess.run(mu_law_decode(y, channels))
self.assertAllEqual(decoded_manual, decode)
def testDecodeRamp(self):
np.random.seed(40)
channels = 128
number_of_samples = 512
number_of_steps = 2.0 / number_of_samples
x = np.arange(-1.0, 1.0, number_of_steps)
y = manual_mu_law_encode(x, channels)
decoded_manual = manual_mu_law_decode(y, channels)
with self.test_session() as sess:
decode = sess.run(mu_law_decode(y, channels))
self.assertAllEqual(decoded_manual, decode)
def testDecodeZeros(self):
np.random.seed(40)
channels = 128
number_of_samples = 100
x = np.zeros(number_of_samples)
y = manual_mu_law_encode(x, channels)
decoded_manual = manual_mu_law_decode(y, channels)
with self.test_session() as sess:
decode = sess.run(mu_law_decode(y, channels))
self.assertAllEqual(decoded_manual, decode)
def testDecodeNegativeDilation(self):
channels = 10
y = [0, 255, 243, 31, 156, 229, 0, 235, 202, 18]
with self.test_session() as sess:
self.assertRaises(TypeError, sess.run(mu_law_decode(y, channels)))
if __name__ == '__main__':
tf.test.main()