-
Notifications
You must be signed in to change notification settings - Fork 19
/
siamese_three_stream.py
172 lines (146 loc) · 6.07 KB
/
siamese_three_stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import string
import pandas as pd
from keras.optimizers import Adam
from keras.utils import np_utils
import numpy as np
from config import *
import json
from keras import backend as K
from keras.layers import Dense, Dropout
from keras.models import Model, load_model
from sys import argv
from custom_layers import *
from collections import Counter
import os
metadata_dict = {}
#------------------------------------------------------------------------------
def read_metadata(labels):
global metadata_dict
data = pd.read_csv(ocr_file, sep=' ')
ocr_dict = {}
#"{0:05b}".format(10)
alpha_dict = {i.upper():j/35 for j,i in enumerate(string.ascii_uppercase + string.digits)}
data.fillna(0, inplace=True)
for i in data.index:
key = "/".join(data.loc[i,"file"].split("/")[-5:])
ocrs = []
for char1 in data.loc[i,'pred']:
ocrs.append(alpha_dict[char1])
if len(ocrs)<7:
ocrs+=[0]*(7-len(ocrs))
for j in range(1,8):
ocrs.append(data.loc[i,'char%d' % j])
ocr_dict[key] = ocrs
for i in labels:
key = "/".join(i.split("/")[-5:])
if key in ocr_dict:
metadata_dict[i] = ocr_dict[key]
else:
metadata_dict[i] = [0] * 14
del ocr_dict, data, alpha_dict
return metadata_dict
#------------------------------------------------------------------------------
def siamese_model(input1, input2):
left_input_P = Input(input1)
right_input_P = Input(input1)
left_input_C = Input(input2)
right_input_C = Input(input2)
convnet_plate = small_vgg_plate(input1)
encoded_l_P = convnet_plate(left_input_P)
encoded_r_P = convnet_plate(right_input_P)
convnet_car = small_vgg_car(input2)
encoded_l_C = convnet_car(left_input_C)
encoded_r_C = convnet_car(right_input_C)
auxiliary_input = Input(shape=(metadata_length,), name='aux_input')
inputs = [left_input_P, right_input_P, left_input_C, right_input_C, auxiliary_input]
# Add the distance function to the network
L1_distanceP = L1_layer([encoded_l_P, encoded_r_P])
L1_distanceC = L1_layer([encoded_l_C, encoded_r_C])
x = Concatenate()([L1_distanceP, L1_distanceC, auxiliary_input])
x = Dense(1024, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(1024, kernel_initializer='normal',activation='relu')(x)
x = Dropout(0.5)(x)
predF2 = Dense(2,kernel_initializer='normal',activation='softmax', name='class_output')(x)
regF2 = Dense(1,kernel_initializer='normal',activation='sigmoid', name='reg_output')(x)
optimizer = Adam(0.0001)
losses = {
'class_output': 'binary_crossentropy',
'reg_output': 'mean_squared_error'
}
lossWeights = {"class_output": 1.0, "reg_output": 1.0}
model = Model(inputs=inputs, outputs=[predF2, regF2])
model.compile(loss=losses, loss_weights=lossWeights,optimizer=optimizer, metrics=kmetrics)
return model
#------------------------------------------------------------------------------
if __name__ == '__main__':
data = json.load(open('%s/dataset_1.json' % (path)))
labels = []
for k in keys:
for img in data[k]:
labels += [img[0][0], img[2][0]]
labels = list(set(labels))
read_metadata(labels)
input1 = (image_size_h_p,image_size_w_p,nchannels)
input2 = (image_size_h_c,image_size_w_c,nchannels)
type1 = argv[1]
if type1=='train':
for k,val_idx in enumerate(keys):
K.clear_session()
idx = fold(keys,k, train=True)
val = data[val_idx]
trn = data[idx[0]] + data[idx[1]]
trnGen = SiameseSequence(trn, train_augs, metadata_dict=metadata_dict,metadata_length=metadata_length)
tstGen = SiameseSequence(val, test_augs, metadata_dict=metadata_dict,metadata_length=metadata_length)
siamese_net = siamese_model(input1, input2)
f1 = 'model_three_stream_%d.h5' % (k)
#fit model
history = siamese_net.fit_generator(trnGen,
epochs=NUM_EPOCHS,
validation_data=tstGen)
#validate plate model
tstGen2 = SiameseSequence(val, test_augs, metadata_dict=metadata_dict,metadata_length=metadata_length, with_paths = True)
test_report('validation_three_stream_%d' % (k),siamese_net, tstGen2)
siamese_net.save(f1)
elif type1 == 'test':
folder = argv[3]
for k in range(len(keys)):
idx = fold(keys,k, train=False)
tst = data[idx[0]] + data[idx[1]]
tstGen2 = SiameseSequence(tst, test_augs, metadata_dict=metadata_dict,metadata_length=metadata_length, with_paths = True)
f1 = os.path.join(folder,'model_three_stream_%d.h5' % (k))
siamese_net = load_model(f1, custom_objects=customs_func)
test_report('test_three_stream_%d' % (k),siamese_net, tstGen2)
elif type1 == 'predict':
results = []
data = json.load(open(argv[2]))
alpha_dict = {i.upper():j/35 for j,i in enumerate(string.ascii_uppercase + string.digits)}
img1 = (process_load(data['img1_plate'], input1)/255.0).reshape(1,input1[0],input1[1],input1[2])
img2 = (process_load(data['img2_plate'], input1)/255.0).reshape(1,input1[0],input1[1],input1[2])
img3 = (process_load(data['img1_shape'], input2)/255.0).reshape(1,input2[0],input2[1],input2[2])
img4 = (process_load(data['img2_shape'], input2)/255.0).reshape(1,input2[0],input2[1],input2[2])
aux1 = []
for str1 in data['ocr1']:
for c in str1:
aux1.append(alpha_dict[c])
aux1 += data['probs1']
aux2 = []
for str1 in data['ocr2']:
for c in str1:
aux2.append(alpha_dict[c])
aux2 += data['probs2']
diff = abs(np.array(aux1[:7]) - np.array(aux2[:7])).tolist()
for j in range(len(diff)):
diff[j] = 1 if diff[j] else 0
metadata = aux1 + aux2 + diff
metadata = np.array(metadata).reshape(1,-1)
X = [img1, img2, img3, img4, metadata]
folder = argv[2]
for k in range(len(keys)):
K.clear_session()
f1 = os.path.join(folder,'model_three_stream_%d.h5' % (k))
model = load_model(f1, custom_objects=customs_func)
Y_ = model.predict(X)
results.append(np.argmax(Y_[0]))
print("model %d: %s" % (k+1,"positive" if results[k]==POS else "negative"))
print("final result: %s" % ("positive" if Counter(results).most_common(1)[0][0]==POS else "negative"))