-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path116862_ntt.mod
140 lines (122 loc) · 2.9 KB
/
116862_ntt.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
: $Id: ntt.mod,v 1.7 2003/12/11 00:37:51 billl Exp $
TITLE Low threshold calcium current
:
: Ca++ current responsible for low threshold spikes (LTS)
: RETICULAR THALAMUS
: Differential equations
:
: Model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992.
: The kinetics is described by standard equations (NOT GHK)
: using a m2h format, according to the voltage-clamp data
: (whole cell patch clamp) of Huguenard & Prince, J Neurosci.
: 12: 3804-3817, 1992.
:
: - Kinetics adapted to fit the T-channel of reticular neuron
: - Q10 changed to 5 and 3
: - Time constant tau_h fitted from experimental data
: - shift parameter for screening charge
:
: ACTIVATION FUNCTIONS FROM EXPERIMENTS (NO CORRECTION)
:
: Reversal potential taken from Nernst Equation
:
: Written by Alain Destexhe, Salk Institute, Sept 18, 1992
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX it2
:USEION Ca READ Cai, Cao WRITE iCa VALENCE 2
USEION ca READ cai,cao WRITE ica
RANGE gcabar, g, shift1
GLOBAL m_inf, tau_m, h_inf, tau_h, shift2, sm, sh, phi_m, phi_h, hx, mx,rat
}
UNITS {
(molar) = (1/liter)
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
celsius = 36 (degC)
: eCa = 120 (mV)
gcabar = .024 (mho/cm2)
shift1 = -1 (mV)
shift2 = -6 (mV)
sm = 7.4
sh = 5.0
hx = 1.5
mx = 3.0
cai (mM) : adjusted for eca=120 mV
cao (mM)
rat = 1
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
g (mho/cm2)
:carev (mV)
m_inf
tau_m (ms)
h_inf
tau_h (ms)
phi_m
phi_h
}
BREAKPOINT {
SOLVE castate METHOD cnexp
g = gcabar * m*m*h
ica = g * ghk(v, cai, cao)
}
DERIVATIVE castate {
evaluate_fct(v)
m' = (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
}
UNITSOFF
INITIAL {
VERBATIM
cai = _ion_cai;
cao = _ion_cao;
ENDVERBATIM
: Activation functions and kinetics were obtained from
: Huguenard & Prince, and were at 23-25 deg.
: Transformation to 36 deg assuming Q10 of 5 and 3 for m and h
: (as in Coulter et al., J Physiol 414: 587, 1989)
:
phi_m = mx ^ ((celsius-24)/10)
phi_h = hx ^ ((celsius-24)/10)
evaluate_fct(v)
m = m_inf
h = h_inf
}
PROCEDURE evaluate_fct(v(mV)) {
:
: Time constants were obtained from J. Huguenard
:
m_inf = 1.0 / ( 1 + exp(-(v+shift1+50)/sm) )
h_inf = 1.0 / ( 1 + exp((v+shift2+78)/sh) )
tau_m = (2+1.0/(exp((v+shift1+35)/10)+exp(-(v+shift1+100)/15)))/ phi_m
tau_h = (24.22+1.0/(exp((v+55.56)/3.24)+exp(-(v+383.56)/51.26)))/phi_h
}
FUNCTION ghk(v(mV), Ci(mM), Co(mM)) (.001 coul/cm3) {
LOCAL z, eci, eco
z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
eco = Co*efun(z)*rat
eci = Ci*efun(-z)
:high Cao charge moves inward
:negative potential charge moves inward
ghk = (.001)*2*FARADAY*(eci - eco)
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
UNITSON