This is the repo used for human motion prediction with non-autoregressive transformers published with our paper
- Pytorch>=1.7.
- Numpy.
- Tensorboard for pytorch.
We have performed experiments with 2 different datasets
- H36M
- NTURGB+D (60 actions)
Follow the instructions to download each dataset and place it in data
.
Note. You can download the H36M dataset using wget http://www.cs.stanford.edu/people/ashesh/h3.6m.zip
.
However, the code expects files to be npy files instead of txt.
You can use the script in data/h36_convert_txt_to_numpy.py
to convert to npy files.
To run training with H3.6M dataset and save experiment results in POTR_OUT
folder
run the following:
python training/transformer_model_fn.py \
--model_prefix=${POTR_OUT} \
--batch_size=16 \
--data_path=${H36M} \
--learning_rate=0.0001 \
--max_epochs=500 \
--steps_per_epoch=200 \
--loss_fn=l1 \
--model_dim=128 \
--num_encoder_layers=4 \
--num_decoder_layers=4 \
--num_heads=4 \
--dim_ffn=2048 \
--dropout=0.3 \
--lr_step_size=400 \
--learning_rate_fn=step \
--warmup_epochs=100 \
--pose_format=rotmat \
--pose_embedding_type=gcn_enc \
--dataset=h36m_v2 \
--pre_normalization \
--pad_decoder_inputs \
--non_autoregressive \
--pos_enc_alpha=10 \
--pos_enc_beta=500 \
--predict_activity \
--action=all
Where pose_embedding_type
controls the type of architectures of networks
to be used for encoding and decoding skeletons (\phi and \psi in our paper).
See models/PoseEncoderDecoder.py
for the types of architectures.
Tensorboard curves and pytorch models will be saved in ${POTR_OUT}
.
If you happen to use the code for your research, please cite the following paper
@inproceedings{Martinez_ICCV_2021,
author = "Mart\'inez-Gonz\'alez, A. and Villamizar, M. and Odobez, J.M.",
title = {Pose Transformers (POTR): Human Motion Prediction with Non-Autoregressive Transformers},
booktitle = {IEEE/CVF International Conference on Computer Vision - Workshops (ICCV)},
year = {2021}
}