-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathHF_api.py
263 lines (230 loc) · 8.01 KB
/
HF_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# HF_api.py
import aiohttp
import base64
import logging
import json
from typing import List, Union, Optional, Dict, Any
from huggingface_hub import InferenceClient
from io import BytesIO
import requests
from PIL import Image
logger = logging.getLogger(__name__)
async def send_huggingface_request(
base_ip: str,
base64_images: Optional[List[str]],
model: str,
system_message: str,
user_message: str,
messages: List[Dict[str, Any]],
api_key: str,
seed: Optional[int] = None,
temperature: float = 0.7,
max_tokens: int = 1024,
top_p: float = 0.95,
strategy: str = "normal",
batch_count: int = 1,
mask: Optional[str] = None,
**kwargs
) -> Dict[str, Any]:
"""
Send request to HuggingFace Inference API with support for different strategies
"""
try:
if not api_key:
raise ValueError("HuggingFace API key is required")
if strategy == "create":
# Handle text-to-image generation
return await generate_images(
model=model,
prompt=user_message,
api_key=api_key,
num_images=batch_count,
seed=seed,
negative_prompt=kwargs.get('neg_content', '')
)
elif strategy == "edit":
# Handle image-to-image editing
if not base64_images:
raise ValueError("Image required for edit strategy")
return await edit_images(
model=model,
image=base64_images[0],
mask=mask,
prompt=user_message,
api_key=api_key,
num_images=batch_count,
negative_prompt=kwargs.get('neg_content', '')
)
else:
# Handle regular chat/vision requests
client = InferenceClient(api_key=api_key)
# Prepare messages for VLM
formatted_messages = prepare_messages(
system_message=system_message,
user_message=user_message,
messages=messages,
base64_images=base64_images
)
response = await run_inference(
client=client,
model=model,
messages=formatted_messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
seed=seed
)
return format_response(response)
except Exception as e:
error_msg = f"Error in HuggingFace API request: {str(e)}"
logger.error(error_msg)
return {"choices": [{"message": {"content": error_msg}}]}
async def generate_images(
model: str,
prompt: str,
api_key: str,
num_images: int = 1,
seed: Optional[int] = None,
negative_prompt: Optional[str] = None
) -> Dict[str, Any]:
"""Generate images using HuggingFace text-to-image models"""
api_url = f"https://api-inference.huggingface.co/models/{model}"
headers = {"Authorization": f"Bearer {api_key}"}
payload = {
"inputs": prompt,
"parameters": {
"num_inference_steps": 50,
"guidance_scale": 7.5,
"negative_prompt": negative_prompt if negative_prompt else None,
"num_images_per_prompt": num_images,
}
}
if seed is not None:
payload["parameters"]["seed"] = seed
try:
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=payload) as response:
response.raise_for_status()
# Handle both single image and batch responses
images = []
if response.content_type == 'application/json':
data = await response.json()
images = [d.get("image", "") for d in data]
else:
# Single image as bytes
image_bytes = await response.read()
images = [base64.b64encode(image_bytes).decode('utf-8')]
return {
"images": images
}
except Exception as e:
logger.error(f"Error generating images: {str(e)}")
raise
async def edit_images(
model: str,
image: str,
mask: Optional[str],
prompt: str,
api_key: str,
num_images: int = 1,
negative_prompt: Optional[str] = None
) -> Dict[str, Any]:
"""Edit images using HuggingFace image-to-image models"""
api_url = f"https://api-inference.huggingface.co/models/{model}"
headers = {"Authorization": f"Bearer {api_key}"}
# Prepare payload
payload = {
"inputs": {
"image": image,
"prompt": prompt,
"negative_prompt": negative_prompt if negative_prompt else None,
"num_images": num_images,
}
}
if mask is not None:
payload["inputs"]["mask"] = mask
try:
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=payload) as response:
response.raise_for_status()
images = []
if response.content_type == 'application/json':
data = await response.json()
images = [d.get("image", "") for d in data]
else:
image_bytes = await response.read()
images = [base64.b64encode(image_bytes).decode('utf-8')]
return {
"images": images
}
except Exception as e:
logger.error(f"Error editing images: {str(e)}")
raise
def prepare_messages(
system_message: str,
user_message: str,
messages: List[Dict[str, Any]],
base64_images: Optional[List[str]] = None
) -> List[Dict[str, Any]]:
"""Prepare messages for HuggingFace VLM models"""
prepared_messages = []
if system_message:
prepared_messages.append({
"role": "system",
"content": system_message
})
# Add previous messages
prepared_messages.extend(messages)
# Add current message with images if present
if base64_images:
content = [{"type": "text", "text": user_message}]
for img in base64_images:
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img}"
}
})
prepared_messages.append({"role": "user", "content": content})
else:
prepared_messages.append({"role": "user", "content": user_message})
return prepared_messages
async def run_inference(
client: InferenceClient,
model: str,
messages: List[Dict[str, Any]],
max_tokens: int,
temperature: float,
top_p: float,
seed: Optional[int] = None
) -> Any:
"""Run inference using HuggingFace client"""
params = {
"model": model,
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": False
}
if seed is not None:
params["seed"] = seed
return await client.chat.completions.create(**params)
def format_response(response: Any) -> Dict[str, Any]:
"""Format HuggingFace response to match expected structure"""
if hasattr(response, 'choices'):
return {
"choices": [{
"message": {
"content": choice.message.content
}
} for choice in response.choices]
}
else:
return {
"choices": [{
"message": {
"content": str(response)
}
}]
}